Simulation Calculation of Element Number Density in the Earth’s Atmosphere Based on X-ray Occultation Sounding
Abstract
1. Introduction
2. Forward Model and Simulation Spectrum
3. Element Density Retrieval
4. Discussion and Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCMC | Markov Chain Monte Carlo |
NICER | The Neutron star Interior Composition Explorer |
XTI | X-ray Timing Instrument |
RSP | detector response matrix |
References
- Mori, K.; Tsunemi, H.; Katayama, H.; Burrows, D.N.; Garmire, G.P.; Metzger, A.E. An X-ray Measurement of Titan’s Atmospheric Extent from Its Transit of the Crab Nebula. Astrophys. J. 2004, 607, 1065–1069. [Google Scholar] [CrossRef]
- Rahmati, A.; Larson, D.E.; Cravens, T.E.; Lillis, R.J.; Lee, C.O.; Dunn, P.A. MAVEN SEP Observations of Scorpius X-1 X-rays at Mars: A Midatmosphere Occultation Analysis Technique. Geophys. Res. Lett. 2020, 47, e88927. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, 107, 1468. [Google Scholar] [CrossRef]
- Determan, J.R.; Budzien, S.A.; Kowalski, M.P.; Lovellette, M.N.; Ray, P.S.; Wolff, M.T.; Wood, K.S.; Titarchuk, L.; Bandyopadhyay, R. Measuring atmospheric density with X-ray occultation sounding. J. Geophys. Res. 2007, 112, A06323. [Google Scholar] [CrossRef]
- Roble, R.G.; Dickinson, R.E. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophys. Res. Lett. 1989, 16, 1441–1444. [Google Scholar] [CrossRef]
- Katsuda, S.; Fujiwara, H.; Ishisaki, Y.; Yoshitomo, M.; Mori, K.; Motizuki, Y.; Sato, K.; Tashiro, M.S.; Terada, Y. New Measurement of the Vertical Atmospheric Density Profile from Occultations of the Crab Nebula With X-ray Astronomy Satellites Suzaku and Hitomi. J. Geophys. Res. 2021, 126, e28886. [Google Scholar] [CrossRef]
- Yu, D.; Li, H.; Li, B.; Ge, M.; Tuo, Y.; Li, X.; Xue, W.; Liu, Y.; Wang, A.; Zhu, Y.; et al. Measurement of the vertical atmospheric density profile from the X-ray Earth occultation of the Crab Nebula with Insight-HXMT. Atmos. Meas. Tech. 2022, 15, 3141–3159. [Google Scholar] [CrossRef]
- Yu, D.; Li, H.; Li, B.; Ge, M.; Tuo, Y.; Li, X.; Xue, W.; Liu, Y. New method for Earth neutral atmospheric density retrieval based on energy spectrum fitting during occultation with LE/Insight-HXMT. Adv. Space Res. 2022, 69, 3426–3434. [Google Scholar] [CrossRef]
- Gendreau, K.C.; Arzoumanian, Z.; Adkins, P.W.; Albert, C.L.; Anders, J.F.; Aylward, A.T.; Baker, C.L.; Balsamo, E.R.; Bamford, W.A.; Benegalrao, S.S.; et al. The Neutron star Interior Composition Explorer (NICER): Design and development. In Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; den Herder, J.W.A., Takahashi, T., Bautz, M., Eds.; SPIE: Bellingham, WA, USA, 2016; Volume 9905, p. 99051H. [Google Scholar] [CrossRef]
- Russell, J.M.; Gordley, L.L.; Park, J.H.; Drayson, S.R.; Hesketh, W.D.; Cicerone, R.J.; Tuck, A.F.; Frederick, J.E.; Harries, J.E.; Crutzen, P.J. The Halogen Occultation Experiment. J. Geophys. Res. 1993, 98, 10777–10797. [Google Scholar] [CrossRef]
- Lumpe, J.D.; Floyd, L.E.; Herring, L.C.; Gibson, S.T.; Lewis, B.R. Measurements of thermospheric molecular oxygen from the Solar Ultraviolet Spectral Irradiance Monitor. J. Geophys. Res. 2007, 112, D16308. [Google Scholar] [CrossRef]
- Noël, S.; Bramstedt, K.; Rozanov, A.; Bovensmann, H.; Burrows, J.P. Water vapour profiles from SCIAMACHY solar occultation measurements derived with an onion peeling approach. Atmos. Meas. Tech. 2010, 3, 523–535. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Tan, Y.; Yang, Y.; Ge, M.; Zhang, J.; Tuo, Y.; Wu, B.; Liao, J.; Zhang, Y.; et al. In-flight calibration of the Insight-Hard X-ray Modulation Telescope. J. High Energy Astrophys. 2020, 27, 64–76. [Google Scholar] [CrossRef]
- Kirsch, M.G.; Briel, U.G.; Burrows, D.; Campana, S.; Cusumano, G.; Ebisawa, K.; Freyberg, M.J.; Guainazzi, M.; Haberl, F.; Jahoda, K.; et al. Crab: The standard X-ray candle with all (modern) X-ray satellites. In UV, X-ray, and Gamma-ray Space Instrumentation for Astronomy XIV; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Siegmund, O.H.W., Ed.; SPIE: Bellingham, WA, USA, 2005; Volume 5898, pp. 22–33. [Google Scholar] [CrossRef]
- Meyer, M.; Horns, D.; Zechlin, H.S. The Crab Nebula as a standard candle in very high-energy astrophysics. Astron. Astrophys. 2010, 523, A2. [Google Scholar] [CrossRef]
- Yan, L.L.; Ge, M.Y.; Lu, F.J.; Zheng, S.J.; Tuo, Y.L.; Li, Z.J.; Song, L.M.; Qu, J.L. Time Evolution of the X-ray and ɤ-ray Fluxes of the Crab Pulsar. Astrophys. J. 2018, 865, 21. [Google Scholar] [CrossRef]
- Arnaud, K.; Dorman, B.; Gordon, C. XSPEC: An X-ray Spectral Fitting Package; Astrophysics Source Code Library: Houghton, MI, USA, 1999. [Google Scholar]
- Massaro, E.; Campana, R.; Cusumano, G.; Mineo, T. The optical to ɤ-ray emission of the Crab pulsar: A multicomponent model. Astron. Astrophys. 2006, 459, 859–870. [Google Scholar] [CrossRef]
- Chantler, C. Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and Scattering Cross Section, and Mass Attenuation Coefficients in the Vicinity of Absorption Edges in the Soft X-ray (Z = 30–36, Z = 60–89, E = 0.1 keV–10 keV), Addressing Convergence Issues of Earlier Work. J. Synchrotron Radiat. 2001, 8, 1124. [Google Scholar] [CrossRef]
- Elam, W.; Ravel, B.; Sieber, J. A new atomic database for X-ray spectroscopic calculations. Radiat. Phys. Chem. 2002, 63, 121–128. [Google Scholar] [CrossRef]
- Bayes, M.; Price, M. An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, FRS Communicated by Mr. Price, in a Letter to John Canton, AMFRS. Philos. Trans. R. Soc. Lond. Ser. I 1763, 53, 370–418. [Google Scholar]
- Cash, W. Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 1979, 228, 939–947. [Google Scholar] [CrossRef]
- Chib, S.; Greenberg, E. Understanding the Metropolis-Hastings Algorithm. Am. Stat. 1995, 49, 327–335. [Google Scholar] [CrossRef]
- Dunkley, J.; Bucher, M.; Ferreira, P.G.; Moodley, K.; Skordis, C. Fast and reliable Markov chain Monte Carlo technique for cosmological parameter estimation. Mon. Not. R. Astron. Soc. 2005, 356, 925–936. [Google Scholar] [CrossRef]
- Sharma, S. Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy. Annu. Rev. Astron. Astrophys. 2017, 55, 213–259. [Google Scholar] [CrossRef]
- Lamminpää, O.; Hobbs, J.; Brynjarsdóttir, J.; Laine, M.; Braverman, A.; Lindqvist, H.; Tamminen, J. Accelerated MCMC for Satellite-Based Measurements of Atmospheric CO2. Remote Sens. 2019, 11, 2061. [Google Scholar] [CrossRef]
- Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 2013, 125, 306. [Google Scholar] [CrossRef]
- Ortner, J.; Maseland, H. Introduction to Solar Terrestrial Relations: Proceedings of the Summer School in Space Physics Held in Alpbach, Austria, July 15–August 10, 1963 and Organized by the European Preparatory Commission for Space Research (COPERS); Springer Science & Business Media: Berlin, Germany, 2012; Volume 2. [Google Scholar]
Latitude and Longitude | Altitude (Resolution) | Date and Time (UT) | (sfu) | Average (sfu) | Ap (nT) |
---|---|---|---|---|---|
(, ) | 10–400 km (0.5 km) | 1 September 2020 10:00 | 70 | 70 | 16 |
Altitude (km) | B | |||||
---|---|---|---|---|---|---|
120 | [0.38, 2.46] | [0.45, 1.28] | [0.15, 0.21] | |||
125 | [0.61, 2.61] | [0.39, 1.22] | [0.14, 0.20] | |||
130 | [0.58, 2.16] | [0.54, 1.23] | [0.15, 0.21] | |||
135 | [0.54, 1.62] | [0.74, 1.25] | [0.14, 0.20] | |||
140 | [0.24, 1.04] | [0.99, 1.39] | [0.16, 0.22] | |||
145 | [1.14, 1.46] | [0.76, 0.92] | [0.14, 0.20] | |||
150 | [1.08, 1.37] | [0.78, 0.93] | [0.11, 0.17] | |||
155 | [0.51, 0.85] | [1.04, 1.24] | [0.16, 0.22] | |||
160 | [0.52, 0.85] | [1.08, 1.28] | [0.11, 0.17] | |||
165 | [0.64, 0.97] | [1.02, 1.23] | [0.15, 0.21] | |||
170 | [0.99, 1.30] | [0.77, 0.97] | [0.14, 0.20] | |||
175 | [1.30, 1.65] | [0.74, 0.97] | [0.13, 0.19] | |||
180 | [0.67, 1.05] | [0.85, 1.13] | [0.17, 0.25] | |||
185 | [0.86, 1.32] | [1.05, 1.42] | [0.18, 0.24] | |||
190 | [0.84, 1.32] | [0.75, 1.14] | [0.15, 0.21] | |||
195 | [0.91, 1.45] | [0.89, 1.38] | [0.19, 0.25] | |||
200 | [1.47, 2.05] | [0.30, 0.84] | [0.10, 0.16] | |||
205 | [0.54, 1.18] | [0.94, 1.62] | [0.11, 0.17] | |||
210 | [0.42, 1.10] | [0.57, 1.39] | [0.15, 0.21] | |||
215 | [1.02, 1.76] | [0.36, 1.27] | [0.13, 0.19] | |||
220 | [0.58, 1.35] | [0.28, 1.22] | [0.13, 0.19] | |||
225 | [0.34, 1.18] | [0.21, 1.14] | [0.07, 0.13] | |||
230 | [0.52, 1.37] | [0.20, 1.30] | [0.13, 0.19] | |||
235 | [0.76, 1.62] | [0.12, 1.02] | [0.15, 0.21] | |||
240 | [0.19, 1.02] | [0.29, 1.73] | [0.15, 0.21] | |||
245 | [0.17, 1.20] | [0.97, 3.18] | [0.15, 0.21] | |||
250 | [0.12, 0.92] | [0.58, 2.66] | [0.09, 0.15] |
Altitude (km) | O Element Ratio | N Element Ratio |
---|---|---|
120 | 21.70% | 78.30% |
125 | 22.62% | 77.38% |
130 | 23.77% | 76.23% |
135 | 25.12% | 74.88% |
140 | 26.64% | 73.36% |
145 | 28.28% | 71.72% |
150 | 30.02% | 69.98% |
155 | 31.84% | 68.16% |
160 | 33.71% | 66.29% |
165 | 35.63% | 64.37% |
170 | 37.59% | 62.41% |
175 | 39.57% | 60.43% |
180 | 41.57% | 58.43% |
185 | 43.58% | 56.42% |
190 | 45.60% | 54.40% |
195 | 47.62% | 52.38% |
200 | 49.63% | 50.37% |
205 | 51.62% | 48.38% |
210 | 53.60% | 46.40% |
215 | 55.55% | 44.45% |
220 | 57.48% | 42.52% |
225 | 59.36% | 40.64% |
230 | 61.21% | 38.79% |
235 | 63.01% | 36.99% |
240 | 64.76% | 35.24% |
245 | 66.47% | 33.53% |
250 | 68.12% | 31.88% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, D.; Li, B. Simulation Calculation of Element Number Density in the Earth’s Atmosphere Based on X-ray Occultation Sounding. Remote Sens. 2022, 14, 4971. https://doi.org/10.3390/rs14194971
Yu D, Li B. Simulation Calculation of Element Number Density in the Earth’s Atmosphere Based on X-ray Occultation Sounding. Remote Sensing. 2022; 14(19):4971. https://doi.org/10.3390/rs14194971
Chicago/Turabian StyleYu, Daochun, and Baoquan Li. 2022. "Simulation Calculation of Element Number Density in the Earth’s Atmosphere Based on X-ray Occultation Sounding" Remote Sensing 14, no. 19: 4971. https://doi.org/10.3390/rs14194971
APA StyleYu, D., & Li, B. (2022). Simulation Calculation of Element Number Density in the Earth’s Atmosphere Based on X-ray Occultation Sounding. Remote Sensing, 14(19), 4971. https://doi.org/10.3390/rs14194971