The Effect of Controlled Tile Drainage on Growth and Grain Yield of Spring Barley as Detected by UAV Images, Yield Map and Soil Moisture Content
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site
2.2. Installation of a Manhole and Water Level Control Structures
2.3. Soil Moisture, Soil Texture and Soil Hydrolimits
2.4. Point Sampling and Analysis of Spring Barley Biomass
2.5. Vegetation Indices Based on UAV and Satellite Imagery
2.6. Yield Maps
2.7. Statistical Analysis
2.8. Creation of Maps
3. Results
3.1. Vegetation Indices
3.2. Grain Yield
3.3. Soil Moisture Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duffková, R.; Holub, J.; Fučík, P.; Rožnovský, J.; Novotný, I. Long-Term Water Balance of Selected Field Crops in Different Agricultural Regions of the Czech Republic Using Fao-56 and Soil Hydrological Approaches. Sustainability 2019, 11, 5243. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; McVicar, T.R.; Miralles, D.G.; Yang, Y.; Tomas-Burguera, M. Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. WIREs Clim. Chang. 2020, 11, e632. [Google Scholar] [CrossRef]
- Pokhrel, Y.; Felfelani, F.; Satoh, Y.; Boulange, J.; Burek, P.; Gädeke, A.; Gerten, D.; Gosling, S.N.; Grillakis, M.; Gudmundsson, L.; et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Chang. 2021, 11, 226–233. [Google Scholar] [CrossRef]
- Bouabdelli, S.; Zeroual, A.; Meddi, M.; Assani, A. Impact of temperature on agricultural drought occurrence under the effects of climate change. Theor. Appl. Climatol. 2022, 148, 191–209. [Google Scholar] [CrossRef]
- Cicek, H.; Sunohara, M.; Wilkes, G.; McNairn, H.; Pick, F.; Topp, E.; Lapen, D.R. Using vegetation indices from satellite remote sensing to assess corn and soybean response to controlled tile drainage. Agric. Water Manag. 2010, 98, 261–270. [Google Scholar] [CrossRef]
- Kulhavý, Z.; Fučík, P. Adaptation Option for Land Drainage Systems Toward Sustainable Agriculture and the Environment: A Czech Perspective. Pol. J. Environ. Stud. 2015, 24, 1085–1102. [Google Scholar] [CrossRef]
- Carstensen, M.V.; Børgesen, C.D.; Ovesen, N.B.; Poulsen, J.R.; Hvid, S.K.; Kronvang, B. Controlled Drainage as a Targeted Mitigation Measure for Nitrogen and Phosphorus. J. Environ. Qual. 2019, 48, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Mourtzinis, S.; Andrade, J.F.; Grassini, P.; Edreira, J.I.R.; Kandel, H.; Naeve, S.; Nelson, K.A.; Helmers, M.; Conley, S.P. Assessing benefits of artificial drainage on soybean yield in the North Central US region. Agric. Water Manag. 2021, 243, 1–8. [Google Scholar] [CrossRef]
- Sunohara, M.D.; Gottschall, N.; Wilkes, G.; Craiovan, E.; Topp, E.; Que, Z.; Seidou, O.; Frey, S.; Lapen, D.R. Long term observations of nitrogen and phosphorus export in paired-agricultural watersheds under controlled and conventional tile drainage management. J. Environ. Qual. 2015, 44, 1589–1604. [Google Scholar] [CrossRef] [Green Version]
- Fučík, P.; Zajíček, A.; Kaplická, M.; Duffková, R.; Peterková, J.; Maxová, J.; Takáčová, Š. Incorporating rainfall-runoff events into nitrate-nitrogen and phosphorus load assessments for small tile-drained catchments. Water 2017, 9, 712. [Google Scholar] [CrossRef]
- Ghane, E.; Askar, M.H.; Skaggs, R.W. Design drainage rates to optimize crop production for subsurface-drained fields. Agric. Water Manag. 2021, 257, 107045. [Google Scholar] [CrossRef]
- Wesström, I.; Ekbohm, G.; Linnér, H.; Messing, I. The effects of controlled drainage on subsurface outflow from level agricultural fields. Hydrol. Process. 2003, 17, 1525–1538. [Google Scholar] [CrossRef]
- Drury, C.; Tan, C.; Reynolds, W.; Welacky, T.; Oloya, T.; Gaynor, J. Managing tile drainage, subirrigation, and nitrogen fertilization to enhance crop yields and reduce nitrate loss. J. Environ. Qual. 2009, 38, 1193–1204. [Google Scholar] [CrossRef]
- Kross, A.; Lapen, D.R.; McNairn, H.; Sunohara, M.; Champagne, C.; Wilkes, G. Satellite and in situ derived corn and soybean biomass and leaf area index: Response to controlled tile drainage under varying weather conditions. Agric. Water Manag. 2015, 160, 118–131. [Google Scholar] [CrossRef]
- Povilaitis, A.; Rudzianskaite, A.; Miseviciene, S.; Gasiunas, V.; Miseckaite, O.; Živatkauskiene, I. Efficiency of drainage practices for improving water quality in Lithuania. Trans. ASABE 2018, 61, 179–196. [Google Scholar] [CrossRef] [Green Version]
- Sojka, M.; Kozłowski, M.; Stasik, R.; Napierała, M.; Kęsicka, B.; Wróżyński, R.; Jaskuła, J.; Liberacki, D.; Bykowski, J. Sustainable Water Management in Agriculture—The Impact of Drainage Water Management on Groundwater Table Dynamics and Subsurface Outflow. Sustainability 2019, 11, 4201. [Google Scholar] [CrossRef] [Green Version]
- Tolomio, M.; Borin, M. Controlled drainage and crop production in a long-term experiment in North-Eastern Italy. Agric. Water Manag. 2019, 222, 21–29. [Google Scholar] [CrossRef]
- Salo, H.; Salla, A.; Koivusalo, H. Seasonal effects of controlled drainage on field water balance and groundwater levels. Hydrol. Res. 2021, 52, 1633–1647. [Google Scholar] [CrossRef]
- King, K.W.; Hanrahan, B.R.; Stinner, J.; Shedekar, V.S. Field scale discharge and water quality response, to drainage water management. Agric. Water Manag. 2022, 264, 107421. [Google Scholar] [CrossRef]
- Almen, K.; Jia, X.; DeSutter, T.; Scherer, T.; Lin, M. Impact of Controlled Drainage and Subirrigation on Water Quality in the Red River Valley. Water 2021, 13, 308. [Google Scholar] [CrossRef]
- Helmers, M.J.; Abendroth, L.; Reinhart, B.; Chighladze, G.; Pease, L.; Bowling, L.; Youssef, M.; Ghane, E.; Ahiablame, L.; Brown, L.; et al. Impact of controlled drainage on subsurface drain flow and nitrate load: A synthesis of studies across the U.S. Midwest and Southeast. Agric. Water Manag. 2022, 259, 107265. [Google Scholar] [CrossRef]
- Yuan, N.; Xiong, Y.; Li, Y.; Xu, B.; Liu, F. Experimental Study of the Effect of Controlled Drainage on Soil Water and Nitrogen Balance. Water 2021, 13, 2241. [Google Scholar] [CrossRef]
- Chi, B.; Shi, H.; Xu, D.; Jiao, P. Distribution and variation of water and salt in soil profile under controlling subsurface drainage. Trans. Chin. Soc. Agric. Eng. 2021, 37, 148–158. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Rundquist, D.C.; Keydan, G.; Leavitt, B.; Schepers, J. Monitoring maize (Zea mays L.) phenology with remote sensing. Agron. J. 2004, 96, 1139–1147. [Google Scholar] [CrossRef]
- Jackson, T.J.; Chen, D.; Cosh, M.; Li, F.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ. 2004, 92, 475–482. [Google Scholar] [CrossRef]
- Wiegand, C.L.; Richardson, A.J.; Escobar, A.J.; Gerbermann, A.H. Vegetation indices in crop assessments. Remote Sens. Environ. 1991, 35, 105–119. [Google Scholar] [CrossRef]
- Wang, C.; Feng, M.C.; Yang, W.D.; Ding, G.W.; Sun, H.; Liang, Z.Y.; Xie, Y.K.; Qiao, X.X. Impact of spectral saturation on leaf area index and aboveground biomass estimation of winter wheat. Spectrosc. Lett. 2016, 49, 241–248. [Google Scholar] [CrossRef]
- Tesfaye, A.A.; Awoke, B.G. Evaluation of the saturation property of vegetation indices derived from sentinel-2 in mixed crop-forest ecosystem. Spat. Inf. Res. 2021, 29, 109–121. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Asrar, G.; Fuchs, M.; Kanemasu, E.T.; Hatfield, J.L. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron. J. 1984, 76, 300–306. [Google Scholar] [CrossRef]
- Sellers, P.J. Canopy reflectance, photosynthesis, and transpiration, II. The role of biophysics in the linearity of their interdependence. Remote Sens. Environ. 1987, 21, 143–183. [Google Scholar] [CrossRef]
- Chen, P.Y.; Fedosejevs, G.; Tiscareño-López, M.; Arnold, J.G. Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: An example at corn fields in western Mexico. Environ. Monit. Assess. 2006, 119, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Klem, K.; Rajsnerová, P.; Novotná, K.; Míša, P.; Křen, J. Changes in Vertical Distribution of Spectral Reflectance within Spring Barley Canopy as an Indicator of Nitrogen Nutrition, Canopy Structure and Yield Parameters. Agriculture 2014, 60, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Mistele, B.; Hu, Y.; Yue, X.; Yue, S.; Miao, Y.; Chen, X.; Cui, Z.; Meng, X.; Schmidhalter, U. Remotely estimating aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in China and Germany. Field Crop Res. 2012, 138, 21–32. [Google Scholar] [CrossRef]
- Li, F.; Mistele, B.; Hu, Y.; Chen, X.; Schmidhalter, U. Comparing hyperspectral index optimization algorithms to estimate aerial N uptake using multi-temporal winter wheat datasets from contrasting climatic and geographic zones in China and Germany. Agr. Forest Meteorol. 2013, 180, 44–57. [Google Scholar] [CrossRef]
- Lin, S.; Li, J.; Liu, Q.; Li, L.; Zhao, J.; Yu, W. Evaluating the Effectiveness of Using Vegetation Indices Based on Red-Edge Reflectance from Sentinel-2 to Estimate Gross Primary Productivity. Remote Sens. 2019, 11, 1303. [Google Scholar] [CrossRef] [Green Version]
- Mittermayer, M.; Maidl, F.-X.; Nätscher, L.; Hülsbergen, K.-J. Analysis of site-specific N balances in heterogeneous croplands using digital methods. Eur. J. Agron. 2022, 133, 126442. [Google Scholar] [CrossRef]
- Li, F.; Mistele, B.; Hu, Y.; Chen, X.; Schmidhalter, U. Optimising three–band spectral indices to assess aerial N concentration, N uptake and aboveground biomass of winter wheat remotely in China and Germany. ISPRS J. Photogramm. 2014, 92, 112–123. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Feng, G.; Gao, X.; Li, F.; Liu, B.; Yue, S.; Cheng, S.; Ustin, S.L.; Khosla, R. Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Comput. Electron. Agr. 2015, 112, 54–67. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Zhao, G.; Yuan, F.; Ma, X.; Tan, C.; Yu, W.; Gnyp, M.L.; Lenz–Wiedemann, V.I.S.; Rascher, U.; et al. Satellite Remote Sensing–Based In–Season Diagnosis of Rice Nitrogen Status in Northeast China. Remote Sens. 2015, 7, 10646–10667. [Google Scholar] [CrossRef] [Green Version]
- Vega, A.; Córdoba, M.; Castro-Franco, M.; Balzarini, M. Protocol for automating error removal from yield maps. Precis. Agric. 2019, 20, 1030–1044. [Google Scholar] [CrossRef]
- Tolasz, R.; Kveton, V. Climate Atlas of Czechia, 1st ed.; Czech Hydrometeorological Institute: Prague, Czech, 2007. [Google Scholar]
- WRB. World reference base for soil resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- ISO 11277; Soil Quality–Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation. International Organization for Standardization: Geneva, Switzerland, 2009.
- Novotný, M.; Kervališvili, D.M.; Šanta, M. Irrigation of Field and Special Crops, 1st ed.; Príroda: Bratislava, Slovakia, 2000. [Google Scholar]
- ISO 11261; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 1995.
- Justes, E.; Mary, B.; Meynard, J.M.; Machet, J.M.; Thelierhuche, L. Determination of a critical nitrogen dilution curve for winter–wheat crops. Ann. Bot. 1994, 74, 397–407. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band Enhanced Vegetation Index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Barnes, E.; Clarke, T.; Richards, S.; Colaizzi, P.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000; pp. 16–19. [Google Scholar]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. J Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Method. Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Guyot, G.; Baret, F.; Major, D.J. High spectral resolution: Determination of spectral shifts between the red and the near infrared. Int. Arch. Photogram. Rem. Sens. 1988, 11, 750–760. [Google Scholar]
- Campbell, J.B. Introduction to Remote Sensing; The Guilford Press: New York, NY, USA, 2002. [Google Scholar]
- Shaver, T.M.; Khosla, R.; Westfall, D.G. Evaluation of two ground-based active crop canopy sensors in maize: Growth stage, row spacing, and sensor movement speed. Soil Sci. Soc. Am. J. 2010, 74, 2101–2108. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 334–343. [Google Scholar] [CrossRef]
- Curran, P.J.; Dungan, J.L.; Gholz, H.L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol. 1991, 7, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Mistele, B.; Gutser, R.; Schmidhalter, U. Validation of field-scaled spectral measurements of nitrogen status in winter wheat. In Proceedings of the 7th International Conference on Precision Agriculture and Other Precision Resources Management, Hyatt Regency, Minneapolis, MN, USA, 25–28 July 2004; pp. 1187–1195. [Google Scholar]
- Erdle, K.; Mistele, B.; Schmidhalter, U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crop Res. 2011, 124, 74–84. [Google Scholar] [CrossRef]
- Cisneros, A.; Fiorio, P.; Menezes, P.; Pasqualotto, N.; van Wittenberghe, S.; Bayma, G.; Nogueira, S.F. Mapping Productivity and Essential Biophysical Parameters of Cultivated Tropical Grasslands from Sentinel-2 Imagery. Agronomy 2020, 10, 711. [Google Scholar] [CrossRef]
- Klem, K.; Záhora, J.; Zemek, F.; Trunda, P.; Tůma, I.; Novotná, K.; Hodaňová, P.; Rapantová, B.; Hanuš, J.; Vavříková, J.; et al. Interactive effects of water deficit and nitrogen nutrition on winter wheat. Remote sensing methods for their detection. Agr. Water Manage. 2018, 210, 171–184. [Google Scholar] [CrossRef]
- Klem, K.; Křen, J.; Šimor, J.; Kováč, D.; Holub, P.; Míša, P.; Svobodová, I.; Lukas, V.; Lukeš, P.; Findurová, H.; et al. Improving Nitrogen Status Estimation in Malting Barley Based on Hyperspectral Reflectance and Artificial Neural Networks. Agronomy 2021, 11, 2592. [Google Scholar] [CrossRef]
- Holub, P.; Klem, K.; Tůma, I.; Vavříková, J.; Surá, K.; Veselá, B.; Urban, O.; Záhora, J. Application of organic carbon affects mineral nitrogen uptake by winter wheat and leaching in subsoil: Proximal sensing as a tool for agronomic practice. Sci. Total Environ. 2020, 717, 137058. [Google Scholar] [CrossRef]
- Ayars, J.E.; Christen, E.W.; Hornbuckle, J.W. Controlled drainage for improved water management in arid regions irrigated agriculture. Agr. Water Manage. 2006, 86, 128–139. [Google Scholar] [CrossRef]
- Wesström, I.; Messing, I. Effects of controlled drainage on N and P losses and N dynamics in a loamy sand with spring crops. Agr. Water Manage. 2007, 87, 229–240. [Google Scholar] [CrossRef]
- Wesström, I.; Messing, I.; Linnér, H.; Lindström, J. Controlled drainage—effects on drain outflow and water quality. Agr. Water Manage. 2001, 47, 85–100. [Google Scholar] [CrossRef]
- Madsen, H.B. Distribution of spring barley roots in Danish soils, of different texture and under different climatic conditions. Plant Soil 1985, 88, 31–43. [Google Scholar] [CrossRef]
- Gregory, P.J. Plant Roots: Growth, Activity, and Interaction with Soils, 1st ed.; Blackwell Publishing: Oxford, UK, 2006; p. 318. [Google Scholar]
- Wahlström, E.M.; Kristensen, H.L.; Thomsen, I.K.; Labouriau, R.; Pulido-Moncada, M.; Nielsen, J.A.; Munkholm, L.J. Subsoil compaction effect on spatio-temporal root growth, reuse of biopores and crop yield of spring barley. Eur. J. Agron. 2021, 123, 126225. [Google Scholar] [CrossRef]
- Dou, X.; Shi, H.; Li, R.; Miao, Q.; Tian, F.; Yu, D.; Zhou, L.; Wang, B. Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District. Sustainability 2021, 13, 9835. [Google Scholar] [CrossRef]
- Křen, J.; Klem, K.; Svobodová, I.; Míša, P.; Neudert, L. Yield and grain quality of spring barley as affected by biomass formation at early growth stages. Plant Soil Environ. 2014, 60, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Erdle, K.; Mistele, B.; Schmidhalter, U. Spectral high-throughput assessments of phenotypic differences in biomass and nitrogen partitioning during grain filling of wheat under high yielding Western European conditions. Field Crop Res. 2013, 141, 16–26. [Google Scholar] [CrossRef]
- Janoušek, J.; Jambor, V.; Marcoň, P.; Dohnal, P.; Synková, H.; Fiala, P. Using UAV-Based Photogrammetry to Obtain Correlation between the Vegetation Indices and Chemical Analysis of Agricultural Crops. Remote Sens. 2021, 13, 1878. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Almalki, F.A. Survey on Collaborative Smart Drones and Internet of Things for Improving Smartness of Smart Cities; IEEE Access: Piscataway, NJ, USA, 2019; Volume 7, pp. 128125–128152. [Google Scholar] [CrossRef]
Vegetation Index | Equation | Reference | |
---|---|---|---|
EVI | Enhanced Vegetation Index | 2.5 × (NIR − R)/((NIR + 6.0 × R − 7.5 × B) + 1.0) | [48] |
EVI2 | Enhanced Vegetation Index 2 | 2.5 × (NIR − R)/(NIR + 2.5 × R + 1) | [49] |
GNDVI | Green Normalized Difference Vegetation Index | (NIR − G)/(NIR + G) | [50] |
SRI | Simple Ratio Index | NIR/R | [50] |
NDRE | Normalized Difference Red Edge Index | (NIR − RE)/(NIR + RE) | [51] |
NDVI | Normalized Difference Vegetation Index | (NIR − R)/(NIR + R) | [29] |
NRERI | Normalized Red Edge Index | (NIR − RE)/(NIR − R) | [33] |
Chl | Chlorophyll Index | (NIR − R)/(RE − R) | [52] |
RENDVI | Red-edge NDVI | (RE − R)/(RE + R) | [53] |
SAVI | Soil Adjusted Vegetation Index | 1.5 × ((NIR − R)/(NIR + R + 0.5)) | [54] |
Date of UAV Image/Harvest | Means | Medians | Standard Deviations | |||
---|---|---|---|---|---|---|
CTD | FTD | CTD | FTD | CTD | FTD | |
2 June 2021 (NRERI) | 0.066 | 0.055 | 0.077 | 0.063 | 0.084 | 0.088 |
30 June 2021 (NRERI) | 0.434 | 0.395 | 0.435 | 0.395 | 0.032 | 0.033 |
15 June 2021 (grain yield, t/ha) | 7.103 | 6.807 | 7.095 | 6.831 | 0.193 | 0.204 |
Biomass Parameter | Grain Yield | Grain Nitrogen Uptake | ||||
---|---|---|---|---|---|---|
Date | NRERI | Chl | NDRE | NRERI | Chl | NDRE |
2.6.2021 | 0.22 | 0.25 | 0.26 | 0.21 | 0.36 | 0.32 |
30.6.2021 | 0.51 * | 0.50 * | 0.46 * | 0.40 | 0.41 | 0.36 |
Depths of Soil Moisture Sensors (cm) | Soil Moisture (vol.%) at Sites: | t-Test | df | p-Value | |
---|---|---|---|---|---|
CTD | FTD | ||||
20 | 22.07 | 20.39 | −2.7307 | 183.13 | 0.0069 |
40 | 25.84 | 22.41 | −6.8521 | 179.64 | <0.0001 |
60 | 26.07 | 24.25 | −3.0875 | 146.92 | 0.0024 |
Means of all | 24.66 | 22.35 | −4.3867 | 166.71 | <0.0001 |
Sites | Depth (cm) | FC (vol.%) | PDA (vol.%) | WP (vol.%) | AWC (vol.%) | AWC Saturation Level (%) | Number of Days with Soil Moisture ≥ | |
---|---|---|---|---|---|---|---|---|
PDA (% over PDA) | FC | |||||||
CTD | 20 | 32.6 | 23.4 | 13.0 | 19.6 | 46.4 | 39 (14.3) | 3 |
40 | 34.3 | 25.0 | 14.5 | 19.7 | 57.3 | 52 (16.0) | 6 | |
60 | 34.1 | 25.6 | 15.9 | 18.2 | 55.8 | 46 (20.9) | 12 | |
Means of all | 33.7 | 24.7 | 14.5 | 19.2 | 53.2 | 46 (17.1) | 7 | |
FTD | 20 | 30.0 | 21.2 | 11.7 | 18.3 | 47.4 | 46 (10.4) | 0 |
40 | 31.9 | 23.5 | 14.0 | 18.0 | 46.9 | 38 (7.4) | 0 | |
60 | 32.6 | 24.1 | 14.6 | 18.0 | 53.7 | 53 (9.7) | 0 | |
Means of all | 31.5 | 23.0 | 13.4 | 18.1 | 49.3 | 46 (9.3) | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duffková, R.; Poláková, L.; Lukas, V.; Fučík, P. The Effect of Controlled Tile Drainage on Growth and Grain Yield of Spring Barley as Detected by UAV Images, Yield Map and Soil Moisture Content. Remote Sens. 2022, 14, 4959. https://doi.org/10.3390/rs14194959
Duffková R, Poláková L, Lukas V, Fučík P. The Effect of Controlled Tile Drainage on Growth and Grain Yield of Spring Barley as Detected by UAV Images, Yield Map and Soil Moisture Content. Remote Sensing. 2022; 14(19):4959. https://doi.org/10.3390/rs14194959
Chicago/Turabian StyleDuffková, Renata, Lucie Poláková, Vojtěch Lukas, and Petr Fučík. 2022. "The Effect of Controlled Tile Drainage on Growth and Grain Yield of Spring Barley as Detected by UAV Images, Yield Map and Soil Moisture Content" Remote Sensing 14, no. 19: 4959. https://doi.org/10.3390/rs14194959
APA StyleDuffková, R., Poláková, L., Lukas, V., & Fučík, P. (2022). The Effect of Controlled Tile Drainage on Growth and Grain Yield of Spring Barley as Detected by UAV Images, Yield Map and Soil Moisture Content. Remote Sensing, 14(19), 4959. https://doi.org/10.3390/rs14194959