Aerosols on the Tropical Island of La Réunion (21°S, 55°E): Assessment of Climatology, Origin of Variability and Trend
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sun Photometer and Observation Site
2.2. The Trend-Run Model and Used Data Sets
3. Results
3.1. Column-Integrated Loading and Size of Aerosols
- The upper-right panel of Figure 5 shows a clear behavior of increasing values of α as AOT440 increases;
- The lowest mean and median AOD440 and α values are found for MAM and JJA, followed by DJF, while SON is clearly the season with the highest mean and median values;
- The maximum (minimum) values for AOD440 and α are found in SON (JJA and DJF) and DJF (MAM), respectively;
- The highest (lowest) dispersion for AOD440 and α values are found in SON (MAM and DJF) and MAM and DJF (SON), respectively.
3.2. Origin of the AOD Variability and Linear Trend Estimate
4. Discussion
- Local anthropogenic and wildfire aerosol emissions: This study focused on long-range transport affecting the aerosols burden above La Réunion. However, the used instrument being located in an urban area, the local influence of the measurements could not be excluded, and some of the 89,150 measurement points presented in Section 3.1 (Sun photometer measurements) might have reflected this local influence. Still, as there is no industrial center in La Réunion, as local wildfires are uncommon, and as we dealt with monthly mean within the Trend-Run model, on could consider them negligible.
- Volcanic aerosol emissions: It is noteworthy that the island of La Réunion hosts an active volcano (the Piton de la Fournaise) [59], whose episodic plumes might affect the aerosol burden above Saint-Denis when local circulation is appropriate. In addition, La Réunion was impacted by the Calbuco volcanic plume in 2015 [60]. Attempts were made in the framework of this study to take into account these episodic volcanic aerosol plumes by using the Infrared Atmospheric Sounding Interferometer (IASI) SO2 retrievals (e.g., [61]) over La Réunion as an input parameter into the Trend-Run model. However, no contribution from this forcing was detectable by the model.
- Regional anthropogenic aerosol emissions: The present work dealt with wildfires and sea salt aerosols only. However, contamination due to long-range transport of anthropogenic emissions could not be excluded. Still, the SWIO being a pristine region, the anthropogenic influence could be considered as negligible [3].
- Fire emissions inventories: Regional biomass-burning aerosols emissions were taken from the GFEDv4s database. However, [62] pointed out that “differences across inventories in the interpretation of satellite imagery, the emissions factors assumed for different components of smoke, and the adjustments made for small and obscured fires can result in large regional differences in fire emissions estimates across inventories”. These differences across global fire emissions inventories may have affected our results and would deserve a dedicated study.
- Sea salt aerosols: Sea salt loading over La Réunion was taken into account through the SSAOD550 product from CAMS EAC4. Similarly to the previous point, differences between datasets (such as between CAMS and the Modern-Era Retrospective analysis for Research and Applications, Version 2—MERRA-2, e.g., [63]) for this input parameter used within the Trend-Run model may have affected our results and would deserve a dedicated study.
- Large-scale atmospheric structures: QBO, ENSO, IOD and MJO large-scale atmospheric structures all together explained 5.5 ± 1.7% of the observed AOD440 variability. However, these figures for the large-scale atmospheric structures should be considered carefully for the following reasons (despite the fact that autocorrelations were taken into account within the Trend-Run model): (i) as MJO, ENSO and IOD strongly modulate the occurrence of many types of extreme weathers in the global tropics and midlatitudes, including droughts, heat waves, and subsequent wildfires [64,65,66], and as QBO can impact precipitation patterns, which may inhibit wildfires [67], part of their impact on the variability of the observed AOD over La Réunion was already taken into account in the used GFEDv4s ETPM emission database; (ii) MJO, ENSO and IOD are interconnected through complex dynamical feedbacks (e.g., [68]), and separating precisely their contribution on the variability of the observed AOD over La Réunion would deserve a dedicated study. Actually, the pure statistical approach used in the present study to evaluate the trend of the observed AOD440 over La Réunion as well as the contribution of relevant parameters (or forcings) to the variability of this observed AOD440, could not take into account any transport mechanism determining an impact on the AOD440 over La Réunion. Insights into such transport mechanisms would need the use of a Lagrangian model (such as FLEXPART, e.g., [69]) coupled with emissions inventories and proper injection heights (e.g., [6]).
5. Conclusions
- The seasonal and climatological behaviors of AOD440 and α values over La Réunion were a signature of the main contribution of marine aerosols (coarse particles) along the year and of the Southern Hemisphere BB season from August to November (fine particles), causing a quasi-doubling of the mean AOD440 and α values from 0.06 ± 0.03 and 0.61 ± 0.40, respectively, in December to August up to 0.13 ± 0.07 and 1.06 ± 0.34, respectively, in October.
- The retrieved aerosol VSD showed that the coarse-mode (fine-mode) dominated the total volume concentration for an AOD440 lower (higher) than 0.2 with a mean radius equal to 3 μm (0.15 μm), implying that BB aerosols were the main contributors to the AOD440 increase over La Réunion.
- The main contribution to the AOD440 variability over La Réunion was the BB activity, which explained 67.4 ± 28.1% of the observed AOD440 variability. The main contributions came from SHAF (21.7 ± 7.2%) and SHSA (19.5 ± 8.1%), followed by SEAS (9.8 ± 2.4%), NHAF (7.2 ± 5.6%), AUST (4.7 ± 3.2%) and EQAS (4.5 ± 1.6%).
- The contribution from the surrounding Indian Ocean to the AOD440 variability over La Réunion through sea salts emission equaled 16.3 ± 4.2%. Sea salt aerosols could therefore be considered as the La Réunion AOD baseline, this latter being mainly modulated by the BB plumes coming from the contributing sources areas.
- QBO, ENSO, IOD and MJO large-scale atmospheric structures all together explained 5.5 ± 1.7% of the observed AOD440 variability.
- The calculated trend for AOD440 over La Réunion through the Trend-Run model equaled 0.02 ± 0.01 per decade (2.6 ± 1.3% per year). Using simple linear fits, the calculated trends for α (not shown) and SSAOD550 (not shown) equaled 0.06 ± 0.03 and −1 × 10−3 ± 5 × 10−4 per decade, respectively (0.7 ± 0.4% and −1.3 ± 0.7% per year, respectively). Performing a similar simple linear fit on the ETPM emitted by each considered area weighted by their respective contribution to the AOD440 variability over La Réunion, we found a trend equal to −0.1 ± 0.05 Tg per decade (−0.1 ± 0.05% per year, not shown), which was in agreement with [70] showing low to null trends in fire activity for the areas considered in the present study. These simply calculated trends for α and SSAOD550 may suggest that the Trend-Run-calculated positive trend for AOD440 over La Réunion could be caused by an increase in fine particles loading above La Réunion (increasing α and decreasing sea salt loading). However, the very low (almost null) trend for the weighted ETPM did not allow us to link this increase in fine particles loading to the biomass burning activity, thus leaving open the question of the origin of this AOD440 positive trend over La Réunion.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge Universtiy Press: Cambridge, UK, 2013; pp. 571–657. [Google Scholar]
- Hamilton, D.S.; Lee, L.A.; Pringle, K.J.; Reddington, C.L.; Spracklen, D.V.; Carslaw, K.S. Occurrence of pristine aerosol environments on a polluted planet. Proc. Natl. Acad. Sci. USA 2014, 111, 18466–18471. [Google Scholar] [CrossRef] [Green Version]
- Mallet, P.; Pujol, O.; Brioude, J.; Evan, S.; Jensen, A. Marine aerosol distribution and variability over the pristine Southern Indian Ocean. Atmos. Environ. 2018, 182, 17–30. [Google Scholar] [CrossRef]
- Bremer, H.; Drummond, J.R.; Nichitu, F.; Zou, J.; Gille, J.C.; Deeter, M.N.; Francis, G.; Warner, J.; Kar, J.; Liu, J.; et al. Spatial and temporal variation of MOPITT CO in Africa and South America: A comparison with SHADOZ ozone and MODIS aerosol. J. Geophys. Res. Atmos. 2004, 109, D12304. [Google Scholar] [CrossRef]
- Edwards, D.P.; Emmons, L.K.; Gille, J.C.; Chu, A.; Attié, J.-L.; Giglio, L.; Wood, S.W.; Haywood, J.; Deeter, M.; Massie, S.T.; et al. Satellite-observed pollution from Southern Hemisphere biomass burning. J. Geophys. Res. Atmos. 2006, 111, 6655. [Google Scholar] [CrossRef]
- Duflot, V.; Dils, B.; Baray, J.L.; De Mazière, M.; Attié, J.L.; Vanhaelewyn, G.; Senten, C.; Vigouroux, C.; Clain, G.; Delmas, R. Analysis of the origin of the distribution of CO in the subtropical southern Indian Ocean in 2007. J. Geophys. Res. Atmos. 2010, 115, D22106. [Google Scholar] [CrossRef] [Green Version]
- Duflot, V.; Royer, P.; Chazette, P.; Baray, J.-L.; Courcoux, Y.; Delmas, R. Marine and biomass burning aerosols in the southern Indian Ocean: Retrieval of aerosol optical properties from shipborne lidar and Sun photometer measurements. J. Geophys. Res. Atmos. 2011, 116, D18208. [Google Scholar] [CrossRef] [Green Version]
- Khaykin, S.; Legras, B.; Bucci, S.; Sellitto, P.; Isaksen, L.; Tencé, F.; Bekki, S.; Bourassa, A.; Rieger, L.; Zawada, D.; et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ. 2020, 1, 1–12. [Google Scholar] [CrossRef]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Dowdy, A.J.; Ye, H.; Pepler, A.; Thatcher, M.; Osbrough, S.L.; Evans, J.P.; Di Virgilio, G.; McCarthy, N. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Sci. Rep. 2019, 9, 10073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Arias, J.A.; Dudhia, J.; Gueymard, C.A.; Pozo-Vázquez, D. Assessment of the Level-3 MODIS daily aerosol optical depth in the context of surface solar radiation and numerical weather modeling. Atmos. Chem. Phys. 2013, 13, 675–692. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Carlson, B.; Kahn, R.A.; Lacis, A.A.; Dubovik, O.; Nakajima, T. Reducing multisensor satellite monthly mean aerosol optical depth uncertainty: 1. Objective assessment of current AERONET locations. J. Geophys. Res. Atmos. 2016, 121, 609–613, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Kahn, R.A.; Wei, J.; Carlson, B.E.; Lacis, A.A.; Li, Z.; Li, X.; Dubovik, O.; Nakajima, T. Synergy of Satellite- and Ground-Based Aerosol Optical Depth Measurements Using an Ensemble Kalman Filter Approach. J. Geophys. Res. Atmos. 2020, 125, 31884. [Google Scholar] [CrossRef]
- Bright, J.M.; Gueymard, C.A. Climate-specific and global validation of MODIS Aqua and Terra aerosol optical depth at 452 AERONET stations. Sol. Energy 2019, 183, 594–605. [Google Scholar] [CrossRef]
- Gupta, P.; Remer, L.; Patadia, F.; Levy, R.; Christopher, S. High-Resolution Gridded Level 3 Aerosol Optical Depth Data from MODIS. Remote Sens. 2020, 12, 2847. [Google Scholar] [CrossRef]
- Sogacheva, L.; Popp, T.; Sayer, A.M.; Dubovik, O.; Garay, M.J.; Heckel, A.; Hsu, N.C.; Jethva, H.; Kahn, R.A.; Kolmonen, P.; et al. Merging regional and global aerosol optical depth records from major available satellite products. Atmos. Chem. Phys. 2020, 20, 2031–2056. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Feng, L.; Sun, K.; Tang, J. Assessment of the Representativeness of MODIS Aerosol Optical Depth Products at Different Temporal Scales Using Global AERONET Measurements. Remote Sens. 2020, 12, 2330. [Google Scholar] [CrossRef]
- Horowitz, H.M.; Garland, R.M.; Thatcher, M.; Landman, W.A.; Dedekind, Z.; van der Merwe, J.; Engelbrecht, F.A. Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET. Atmos. Chem. Phys. 2017, 17, 13999–14023. [Google Scholar] [CrossRef] [Green Version]
- Fei, K.-C.; Wu, L.; Zeng, Q.-C. Aerosol Optical Depth and Burden From Large Sea Salt Particles. J. Geophys. Res. Atmos. 2019, 124, 1680–1696. [Google Scholar] [CrossRef]
- Collins, W.D.; Rasch, P.J.; Eaton, B.E.; Fillmore, D.W.; Kiehl, J.T.; Beck, C.T.; Zender, C.S. Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts. J. Geophys. Res. Atmos. 2002, 107, 8028. [Google Scholar] [CrossRef]
- Pant, V.; Deshpande, C.; Kamra, A. The concentration and number size distribution measurements of the Marine Boundary Layer aerosols over the Indian Ocean. Atmos. Res. 2009, 92, 381–393. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Lelieveld, J. Atmospheric pollutant outflow from southern Asia: A review. Atmos. Chem. Phys. 2010, 10, 11017–11096. [Google Scholar] [CrossRef] [Green Version]
- Annegarn, H.; Otter, L.; Swap, R.; Scholes, R. Southern Africa’s ecosystem in a test-tube-A perspective on the Southern African Regional Science Initiative (SAFARI 2000), S. Afr. J. Sci. 2002, 98, 111–113. [Google Scholar]
- Flamant, C.; Gaetani, M.; Chaboureau, J.-P.; Chazette, P.; Cuesta, J.; Piketh, S.J.; Formenti, P. Smoke in the river: An Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) case study. Atmos. Chem. Phys. 2022, 22, 5701–5724. [Google Scholar] [CrossRef]
- Baray, J.-L.; Leveau, J.; Baldy, S.; Jouzel, J.; Keckhut, P.; Bergametti, G.; Ancellet, G.; Bencherif, H.; Cadet, B.; Carleer, M.; et al. An instrumented station for the survey of ozone and climate change in the southern tropics: Scientific motivation, technical description and future plans. J. Environ. Monit. 2006, 8, 1020–1028. [Google Scholar] [CrossRef] [Green Version]
- Baray, J.-L.; Courcoux, Y.; Keckhut, P.; Portafaix, T.; Tulet, P.; Cammas, J.-P.; Hauchecorne, A.; Godin-Beekmann, S.; De Mazière, M.; Hermans, C.; et al. Maïdo observatory: A new high-altitude station facility at Reunion Island (21° S, 55° E) for long-term atmospheric remote sensing and in situ measurements. Atmos. Meas. Tech. 2013, 6, 2865–2877. [Google Scholar] [CrossRef] [Green Version]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Randriambelo, T.; Baray, J.-L.; Baldy, S. The effect of biomass burning, convective venting, and transport on tropospheric O3 over the Indian ocean: Reunion Island field observations, J. Geophys. Res. 2000, 105, 11813–11832. [Google Scholar] [CrossRef]
- Clain, G.; Baray, J.L.; Delmas, R.; Diab, R.; Leclair de Bellevue, J.; Keckhut, P.; Posny, F.; Metzger, J.M.; Cammas, J.P. Tropospheric O3 climatology at two Southern Hemisphere tropical/subtropical sites, (Reunion Island and Irene, South Africa) from ozonesondes, LIDAR, and in situ aircraft measurements. Atmos. Chem. Phys. 2009, 9, 1723–1734. [Google Scholar] [CrossRef] [Green Version]
- Senten, C.; De Mazière, M.; Dils, B.; Hermans, C.; Kruglanski, M.; Neefs, E.; Scolas, F.; Vandaele, A.C.; Vanhaelewyn, G.; Vigouroux, C.; et al. Technical Note: New ground-based FTIR measurements at Ile de La Réunion: Observations, error analysis, and comparisons with independent data. Atmos. Chem. Phys. 2008, 8, 3483–3508. [Google Scholar] [CrossRef] [Green Version]
- Vigouroux, C.; Hendrick, F.; Stavrakou, T.; Dils, B.; De Smedt, I.; Hermans, C.; Merlaud, A.; Scolas, F.; Senten, C.; Vanhaelewyn, G.; et al. Ground-based FTIR and MAX-DOAS observations of formaldehyde at Réunion Island and comparisons with satellite and model data. Atmos. Chem. Phys. 2009, 9, 9523–9544. [Google Scholar] [CrossRef] [Green Version]
- Vigouroux, C.; Stavrakou, T.; Whaley, C.; Dils, B.; Duflot, V.; Hermans, C.; Kumps, N.; Metzger, J.-M.; Scolas, F.; Vanhaelewyn, G.; et al. FTIR time-series of biomass burning products (HCN, C2H6, C2H2, CH3OH, and HCOOH) at Reunion Island (21° S, 55° E) and comparisons with model data. Atmos. Chem. Phys. 2012, 12, 10367–10385. [Google Scholar] [CrossRef]
- Duflot, V.; Baray, J.-L.; Payen, G.; Marquestaut, N.; Posny, F.; Metzger, J.-M.; Langerock, B.; Vigouroux, C.; Hadji-Lazaro, J.; Portafaix, T.; et al. Tropospheric ozone profiles by DIAL at Maïdo Observatory (Reunion Island): System description, instrumental performance and result comparison with ozone external data set. Atmos. Meas. Tech. 2017, 10, 3359–3373. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Langerock, B.; Vigouroux, C.; Sha, M.K.; Ramonet, M.; Delmotte, M.; Mahieu, E.; Bader, W.; Hermans, C.; Kumps, N.; et al. Atmospheric CO and CH4 time series and seasonal variations on Reunion Island from ground-based in situ and FTIR (NDACC and TCCON) measurements. Atmos. Chem. Phys. 2018, 18, 13881–13901. [Google Scholar] [CrossRef] [Green Version]
- Verreyken, B.; Amelynck, C.; Brioude, J.; Müller, J.-F.; Schoon, N.; Kumps, N.; Colomb, A.; Metzger, J.-M.; Lee, C.F.; Koenig, T.K.; et al. Characterisation of African biomass burning plumes and impacts on the atmospheric composition over the south-west Indian Ocean. Atmos. Chem. Phys. 2020, 20, 14821–14845. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterisation. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, A.; Holben, B.; Eck, T.; Dubovik, O.; Slutsker, I. Cloud-Screening and Quality Control Algorithms for the AERONET Database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Ångström, A. The parameters of atmospheric turbidity. Tellus 1964, 16, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- Hauchecorne, A.; Chanin, M.-L.; Keckhut, P. Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar over the south of France. J. Geophys. Res. Atmos. 1991, 96, 15297–15309. [Google Scholar] [CrossRef]
- Keckhut, P.; Hauchecorne, A.; Chanin, M.L. Midlatitude long-term variability of the middle atmosphere: Trends and cyclic and episodic changes. J. Geophys. Res. Atmos. 1995, 100, 18887–18897. [Google Scholar] [CrossRef]
- Guirlet, M.; Keckhut, P.; Godin, S.; Megie, G. Description of the long-term ozone data series obtained from different instrumental techniques at a single location: The Observatoire de Haute-Provence (43.9°N, 5.7°E). Ann. Geophys. 2000, 18, 1325–1339. [Google Scholar] [CrossRef]
- Logan, J.A. Trends in the vertical distribution of ozone: An analysis of ozonesonde data. J. Geophys. Res. Atmos. 1994, 99, 25553–25585. [Google Scholar] [CrossRef]
- Bègue, N.; Bencherif, H.; Sivakumar, V.; Kirgis, G.; Mze, N.; de Bellevue, J.L. Temperature variability and trends in the UT-LS over a subtropical site: Reunion (20.8° S, 55.5° E). Atmos. Chem. Phys. 2010, 10, 8563–8574. [Google Scholar] [CrossRef] [Green Version]
- Bencherif, H.; Diab, R.; Portafaix, T.; Morel, B.; Keckhut, P.; Moorgawa, A. Temperature climatology and trend estimates in the UTLS region as observed over a southern subtropical site, Durban, South Africa. Atmos. Chem. Phys. 2006, 6, 5121–5128. [Google Scholar] [CrossRef] [Green Version]
- Toihir, A.M.; Portafaix, T.; Sivakumar, V.; Bencherif, H.; Pazmiño, A.; Bègue, N. Variability and trend in ozone over the southern tropics and subtropics. Ann. Geophys. 2018, 36, 381–404. [Google Scholar] [CrossRef] [Green Version]
- Lewis, E.R.; Schwartz, S.E. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models—A Critical Review; Geophysical Monograph Series 2004; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Grythe, H.; Ström, J.; Krejci, R.; Quinn, P.; Stohl, A. A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements. Atmos. Chem. Phys. 2014, 14, 1277–1297. [Google Scholar] [CrossRef] [Green Version]
- Naseef, T.M.; Kumar, V.S. Climatology and trends of the Indian Ocean surface waves based on 39-year long ERA5 reanalysis data. Int. J. Clim. 2019, 40, 979–1006. [Google Scholar] [CrossRef]
- Bovalo, C.; Barthe, C.; Bègue, N. A lightning climatology of the South-West Indian Ocean. Nat. Hazards Earth Syst. Sci. 2012, 12, 2659–2670. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, M.C.; Hendon, H.H. An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Mon. Weather. Rev. 2004, 132, 1917–1932. Available online: https://journals.ametsoc.org/view/journals/mwre/132/8/1520-0493_2004_132_1917_aarmmi_2.0.co_2.xml (accessed on 21 July 2022). [CrossRef]
- Smirnov, A.; Holben, B.N.; Kaufman, Y.J.; Dubovik, O.; Eck, T.F.; Slutsker, I.; Pietras, C.; Halthore, R.N. Optical Properties of Atmospheric Aerosol in Maritime Environments. J. Atmos. Sci. 2002, 59, 501–523. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J.; Garay, M.J.; Diner, D.J.; Eck, T.F.; Smirnov, A.; Holben, B.N. Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J. Geophys. Res. Atmos. 2010, 115, D23209. [Google Scholar] [CrossRef]
- Queface, A.J.; Piketh, S.; Annegarn, H.J.; Uthui, R.J.; Holben, B.N. Retrieval of aerosol optical thickness and size distribution from the CIMEL Sun photometer over Inhaca Island, Mozambique. J. Geophys. Res. Atmos. 2003, 108, 2374. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A Satellite View of Aerosols in the Climate System. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef]
- Alizadeh-Choobari, O.; Sturman, A.; Zawar-Reza, P.; Alizadeh-Choobari, O.; Sturman, A.; Zawar-Reza, P. A global satellite view of the seasonal distribution of mineral dust and its correlation with atmospheric circulation. Dyn. Atmos. Ocean. 2014, 68, 20–34. [Google Scholar] [CrossRef]
- Tulet, P.; Di Muro, A.; Colomb, A.; Denjean, C.; Duflot, V.; Arellano, S.; Foucart, B.; Brioude, J.; Sellegri, K.; Peltier, A.; et al. First results of the Piton de la Fournaise STRAP 2015 experiment: Multidisciplinary tracking of a volcanic gas and aerosol plume. Atmos. Chem. Phys. 2017, 17, 5355–5378. [Google Scholar] [CrossRef] [Green Version]
- Bègue, N.; Vignelles, D.; Berthet, G.; Portafaix, T.; Payen, G.; Jégou, F.; Benchérif, H.; Jumelet, J.; Vernier, J.-P.; Lurton, T.; et al. Long-range transport of stratospheric aerosols in the Southern Hemisphere following the 2015 Calbuco eruption. Atmos. Chem. Phys. 2017, 17, 15019–15036. [Google Scholar] [CrossRef] [Green Version]
- Taylor, I.A.; Preston, J.; Carboni, E.; Mather, T.A.; Grainger, R.G.; Theys, N.; Hidalgo, S.; Kilbride, B.M. Exploring the Utility of IASI for Monitoring Volcanic SO2Emissions. J. Geophys. Res. Atmos. 2018, 123, 5588–5606. [Google Scholar] [CrossRef]
- Liu, T.; Mickley L j Marlierc, M.E.; DeFriesd, R.D.; Khane, F.M.; Latiff, M.T.; Karambelasg, A. Diagnosing spatial biases and uncertainties in global fire emissions inventories: Indonesia as regional case study. Remote Sens. Environ. 2020, 237, 111557. [Google Scholar] [CrossRef]
- Weng, H.; Lin, J.; Martin, R.; Millet, D.B.; Jaeglé, L.; Ridley, D.; Keller, C.; Li, C.; Du, M.; Meng, J. Global high-resolution emissions of soil NOx, sea salt aerosols, and biogenic volatile organic compounds. Sci. Data 2020, 7, 148. [Google Scholar] [CrossRef] [PubMed]
- Abram, N.J.; Gagan, M.K.; McCulloch, M.T.; Chappell, J.; Hantoro, W.S. Coral Reef Death During the 1997 Indian Ocean Dipole Linked to Indonesian Wildfires. Science 2003, 301, 952–955. [Google Scholar] [CrossRef] [PubMed]
- Andela, N.; Van Der Werf, G.R. Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nat. Clim. Chang. 2014, 4, 791–795. [Google Scholar] [CrossRef]
- Wang, B.; Chen, G.; Liu, F. Diversity of the Madden-Julian Oscillation. Sci. Adv. 2019, 5, eaax0220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, L.J.; Anstey, J.A.; Kawatani, Y.; Lu, H.; Osprey, S.; Schenzinger, V. Surface impacts of the Quasi Biennial Oscillation. Atmos. Chem. Phys. 2018, 18, 8227–8247. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Zhang, W.; Liu, C.; Stuecker, M.F. Extreme Indian Ocean dipole events associated with El Niño and Madden–Julian oscillation. Clim. Dyn. 2022, 6, 1–16. [Google Scholar] [CrossRef]
- Stohl, A.; Sodemann, H.; Eckhardt, S.; Frank, A.; Seibert, P.; Wotawa, G. The Lagrangian particle dispersion model flexpart version 8.2. 2015. Available online: https://www.flexpart.eu/wiki/FpDocumentation (accessed on 29 September 2022).
- Earl, N.; Simmonds, I. Spatial and temporal variability and trends in 2001–2016 global fire activity. J. Geophys. Res.-Atmos. 2018, 123, 2524–2536. [Google Scholar] [CrossRef]
- Gu, Y.; Liou, K.N.; Jiang, J.H.; Su, H.; Liu, X. Dust aerosol impact on North Africa climate: A GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data. Atmos. Chem. Phys. 2012, 12, 1667–1679. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Che, H.; Qi, B.; Wang, Y.; Dong, Y.; Xia, X.; Wang, H.; Gui, K.; Zheng, Y.; Zhao, H.; et al. Characterization of vertical distribution and radiative forcing of ambient aerosol over the Yangtze River Delta during 2013–2015. Sci. Total Environ. 2019, 650, 1846–1857. [Google Scholar] [CrossRef]
- Lolli, S.; Khor, W.Y.; Matjafri, M.Z.; Lim, H.S. Monsoon Season Quantitative Assessment of Biomass Burning Clear-Sky Aerosol Radiative Effect at Surface by Ground-Based Lidar Observations in Pulau Pinang, Malaysia in 2014. Remote Sens. 2019, 11, 2660. [Google Scholar] [CrossRef] [Green Version]
- Ningombam, S.S.; Dumka, U.C.; Srivastava, A.; Song, H.-J. Optical and physical properties of aerosols during active fire events occurring in the Indo-Gangetic Plains: Implications for aerosol radiative forcing. Atmos. Environ. 2019, 223, 117225. [Google Scholar] [CrossRef]
- Soupiona, O.; Papayannis, A.; Kokkalis, P.; Foskinis, R.; Hernández, G.S.; Ortiz-Amezcua, P.; Mylonaki, M.; Papanikolaou, C.-A.; Papagiannopoulos, N.; Samaras, S.; et al. EARLINET observations of Saharan dust intrusions over the northern Mediterranean region (2014–2017): Properties and impact on radiative forcing. Atmos. Chem. Phys. 2020, 20, 15147–15166. [Google Scholar] [CrossRef]
AOD440 | α | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAM | JJA | SON | DJF | All | MAM | JJA | SON | DJF | All | |
Mean (±std) | 0.06 (±0.03) | 0.07 (±0.04) | 0.11 (±0.07) | 0.07 (±0.03) | 0.08 (±0.05) | 0.58 (±0.40) | 0.58 (±0.38) | 0.96 (±0.37) | 0.71 (±0.40) | 0.71 (±0.42) |
Min | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | −1.85 | −1.56 | −0.22 | −1.37 | −1.85 |
Max | 0.38 | 0.45 | 0.66 | 0.41 | 0.66 | 2.20 | 1.77 | 2.13 | 2.89 | 2.89 |
Median (25th, 75th percentile) | 0.05 (0.04, 0.07) | 0.06 (0.04, 0.08) | 0.09 (0.07, 0.13) | 0.06 (0.05, 0.08) | 0.06 (0.05, 0.09) | 0.51 (0.28, 0.82) | 0.51 (0.28, 0.84) | 0.95 (0.68, 1.23) | 0.66 (0.42, 0.95) | 0.67 (0.39, 1.00) |
Parameters | Contribution (%) |
---|---|
Large-scale atmospheric structures | |
Quasi-Biennial Oscillation (QBO) | 2.9 ± 0.1 |
El Niño Southern Oscillation (ENSO) | 2.1 ± 1.4 |
Indian Ocean Dipole (IOD) | 0.2 ± 0.1 |
Madden–Julian Oscillation (MJO) | 0.3 ± 0.2 |
Total large-scale atmospheric structures | 5.5 ± 1.7 |
Biomass burning | |
Southern Hemisphere South America (SHSA) | 19.5 ± 8.1 |
Northern Hemisphere Africa (NHAF) | 7.2 ± 5.6 |
Southern Hemisphere Africa (SHAF) | 21.7 ± 7.2 |
Southeast Asia (SEAS) | 9.8 ± 2.4 |
Equatorial Asia (EQAS) | 4.5 ± 1.6 |
Australia (AUST) | 4.7 ± 3.2 |
Total biomass burning | 67.4 ± 28.1 |
Sea salts | |
CAMS SSAOD550 | 16.3 ± 4.2 |
Determination coefficient | 89.2 |
Trend (/decade) | 0.02 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duflot, V.; Bègue, N.; Pouliquen, M.-L.; Goloub, P.; Metzger, J.-M. Aerosols on the Tropical Island of La Réunion (21°S, 55°E): Assessment of Climatology, Origin of Variability and Trend. Remote Sens. 2022, 14, 4945. https://doi.org/10.3390/rs14194945
Duflot V, Bègue N, Pouliquen M-L, Goloub P, Metzger J-M. Aerosols on the Tropical Island of La Réunion (21°S, 55°E): Assessment of Climatology, Origin of Variability and Trend. Remote Sensing. 2022; 14(19):4945. https://doi.org/10.3390/rs14194945
Chicago/Turabian StyleDuflot, Valentin, Nelson Bègue, Marie-Léa Pouliquen, Philippe Goloub, and Jean-Marc Metzger. 2022. "Aerosols on the Tropical Island of La Réunion (21°S, 55°E): Assessment of Climatology, Origin of Variability and Trend" Remote Sensing 14, no. 19: 4945. https://doi.org/10.3390/rs14194945
APA StyleDuflot, V., Bègue, N., Pouliquen, M. -L., Goloub, P., & Metzger, J. -M. (2022). Aerosols on the Tropical Island of La Réunion (21°S, 55°E): Assessment of Climatology, Origin of Variability and Trend. Remote Sensing, 14(19), 4945. https://doi.org/10.3390/rs14194945