Correlation Analysis of CO2 Concentration Based on DMSP-OLS and NPP-VIIRS Integrated Data
Abstract
:1. Introduction
2. Data Sources
3. NL Data Preprocessing
3.1. Correcting DMSP-OLS Data
3.2. Correcting NPP-VIIRS Data
3.3. Processing Result
3.4. Regression Analysis
4. Analysis of Experiment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Fitting Figures
References
- He, Y.; Lin, B. Forecasting China’s total energy demand and its structure using ADL-MIDAS model. Energy 2018, 151, 420–429. [Google Scholar] [CrossRef]
- Liu, B.; Ma, X.; Ma, Y.; Li, H.; Jin, S.; Fan, R.; Gong, W. The relationship between atmospheric boundary layer and temperature inversion layer and their aerosol capture capabilities. Atmos. Res. 2022, 271, 106121. [Google Scholar] [CrossRef]
- Dong, Y.; Shi, W.; Du, B.; Hu, X.; Zhang, L. Asymmetric Weighted Logistic Metric Learning for Hyperspectral Target Detection. IEEE Trans. Cybern. 2021, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Schipper, L.; Murtishaw, S.; Khrushch, M.; Ting, M.; Karbuz, S.; Unander, F. Carbon emissions from manufacturing energy use in 13 IEA countries: Long-term trends through 1995. Energy Policy 2001, 29, 667–688. [Google Scholar] [CrossRef]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A. A global review of energy consumption, CO 2 emissions and policy in the residential sector (with an overview of the top ten CO 2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Yu, B.; Tang, M.; Wu, Q.; Yang, C.; Deng, S.; Shi, K.; Peng, C.; Wu, J.; Chen, Z. Urban Built-Up Area Extraction From Log- Transformed NPP-VIIRS Nighttime Light Composite Data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1279–1283. [Google Scholar] [CrossRef]
- Ma, Z.; Xiao, H. Spatiotemporal simulation study of China’s provincial carbon emissions based on satellite night lighting data. China Popul. Resour. Environ. 2017, 27, 143–150. [Google Scholar]
- Wang, Y.; Wang, M.; Li, S.; Lin, Y. Scale effect analysis of carbon emission simulation based on NPP-VIIRS images in Guangdong Province. Bull. Surv. Mapp. 2021, 11, 25–30. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhao, M.; Zhao, X. A harmonized global nighttime light dataset 1992–2018. Sci. Data 2020, 7, 168. [Google Scholar] [CrossRef]
- Lv, Q.; Liu, H.; Wang, J.; Liu, H.; Shang, Y. Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China: Utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets. Sci. Total Environ. 2020, 703, 134394. [Google Scholar] [CrossRef]
- Liu, L.X.; Zhou, L.X.; Xia, L.J.; Wang, H.Y.; Fang, S.X. Establishment and assessment of QA/QC method for sampling and analysis of atmosphere background CO2. Environ. Sci. 2014, 12, 4482–4488. [Google Scholar] [CrossRef]
- Yang, C.Y.; Wang, H.J.; Han, S.J.; Zhao, S.X. Climate simulation for dynamic heterogeneous distribution of atmospheric CO2 concentration. Chin. J. Geophys. 2012, 55, 2809–2825. [Google Scholar]
- NOAA National Centers for Environmental Information (NCEI). DMSP-OLS[EB/OL]. Available online: https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html (accessed on 25 April 2022).
- NOAA National Centers for Environmental Information (NCEI). NPP-VIIRS[EB/OL]. Available online: https://www.ngdc.noaa.gov/eog/viirs/download_ut_mos.html (accessed on 25 April 2022).
- Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid V061 [Data Set]. NASA EOSDIS Land Processes DAAC. 2021. Available online: https://lpdaac.usgs.gov/products/mod13a2v061 (accessed on 12 June 2022).
- Li, M.; Liu, H.; Geng, G.; Hong, C.; Liu, F.; Song, Y.; Tong, D.; Zheng, B.; Cui, H.; Man, H.; et al. Anthropogenic emission inventories in China: A review. Natl. Sci. Rev. 2017, 4, 834–866. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, X. Monthly-Averaged XCO2 in Global. Figshare. Dataset. 2022. Available online: https://figshare.com/articles/dataset/WHUXCO2-GLOBAL/17826404/2 (accessed on 5 May 2022).
- Ma, X.; Zhang, H.; Han, G.; Mao, F.; Xu, H.; Shi, T.; Hu, H.; Sun, T.; Gong, W. A Regional Spatiotemporal Downscaling Method for CO2 Columns. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8084–8093. [Google Scholar] [CrossRef]
- National Geomatics Center of China. Administrative boundaries of China [EB/OL]. Available online: http://www.ngcc.cn/ngcc/ (accessed on 24 April 2022).
- Cao, H.; Li, X.; Tong, Z. Impact of Image Saturation on Radiometric Intercalibration of DMSP/OLS Nighttime Light Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7948–7960. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Hsu, F.C.; Zhizhin, M.; Ghosh, T.; Taneja, J.; Bazilian, M. Indicators of Electric Power Instability from Satellite Observed Nighttime Lights. Remote Sens. 2020, 12, 3194. [Google Scholar] [CrossRef]
- Zhong, L. Monitoring the Economic Development of Countries along the Belt and Road Based on Nighttime Light Remote Sensing Technology. Master’s Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2020. [Google Scholar] [CrossRef]
- Zhao, J. Spatial-Temporal Variation of Carbon Dioxide Emissions and its Relations to Nighttime Surface Temperature in Yangtze River Delta Region Based on Nightlight Imageries. Master’s Thesis, Yunnan Normal University, Kunming, China, 2020. [Google Scholar] [CrossRef]
- Xiao, Y. Research on Carbon Emission of Urban Energy Consumption in Hunan Province Supported by Nighttime Light Remote Sensing Technology. Master’s Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2021. [Google Scholar] [CrossRef]
- Oda, T.; Maksyutov, S.; Andres, R.J. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): A global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions. Earth Syst. Sci. Data 2018, 10, 87–107. [Google Scholar] [CrossRef]
- Martin, C.R.; Zeng, N.; Karion, A.; Mueller, K.; Ghosh, S.; Lopez-Coto, I.; Gurney, K.; Oda, T.; Prasad, K.; Liu, Y.; et al. Investigating sources of variability and error in simulations of carbon dioxide in an urban region. Atmos. Environ. 2018, 199, 55–69. [Google Scholar] [CrossRef]
- Lin, J.; Lu, S.; He, X.; Wang, F. Analyzing the impact of three-dimensional building structure on CO2 emissions based on random forest regression. Energy 2021, 236, 121502. [Google Scholar] [CrossRef]
- Nassar, R.; Napier-Linton, L.; Gurney, K.R.; Andres, R.J.; Oda, T.; Vogel, F.R.; Deng, F. Improving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission data sets. J. Geophys. Res. Atmos. 2013, 118, 917–933. [Google Scholar] [CrossRef]
- Zhu, E. Study on the Spatial-Temporal Pattern of Carbon Emission and its Response to Urbanization in Zhejiang Province. Ph.D. Dissertation, Zhejiang University, Hangzhou, China, 2020. [Google Scholar] [CrossRef]
- Shi, T.; Han, G.; Ma, X.; Gong, W.; Chen, W.; Liu, J.; Zhang, X.; Pei, Z.; Gou, H.; Bu, L. Quantifying CO2 Uptakes Over Oceans Using LIDAR: A Tentative Experiment in Bohai Bay. Geophys. Res. Lett. 2021, 48, e2020GL091160. [Google Scholar] [CrossRef]
- Lei, L.; Zhong, H.; He, Z.; Cai, B.; Yang, S.; Wu, C.; Zeng, Z.; Liu, L.; Zhang, B. Assessment of atmospheric CO2 concentration enhancement from anthropogenic emissions based on satellite observations. Chin. Sci. Bull. 2017, 62, 2941–2950. [Google Scholar] [CrossRef]
- Jianghao, H.; Yulin, C.; Qin, P. Spatial and temporal variations of carbon dioxide and its influencing factors. Chin. Sci. Bull. 2020, 65, 194–202. [Google Scholar]
- Diao, Y.W.; Huang, J.P.; Liu, C.; Cui, J.; Liu, S.D. A Modeling Study of CO2 Flux and Concentrations over the Yangtze River Delta Using the WRF-GHG Model. Chin. J. Atmos. Sci. 2015, 39, 849–860. [Google Scholar]
- Deng, X.; Jiang, S.-J.; Liu, B.; Wang, Z.-H.; Shao, Q. Statistical analysis of the relationship between carbon emissions and temperature rise with the spatially heterogenous distribution of carbon dioxide concentration. J. Nat. Resour. 2021, 36, 934–947. [Google Scholar] [CrossRef]
- Zhang, J.; Song, M.; Liu, B. Current situation of Carbon dioxide emission and suggestions for emission reduction in China. Nat. Resour. Econ. China 2022, 35, 38–44+50. [Google Scholar] [CrossRef]
- Feng, X.; Li, K. Study on optimization and upgrading of industrial structure of Beijing-Tianjin-Hebei Urban agglomeration. Co-Oper. Econ. Sci. 2022, 8, 20–22. [Google Scholar] [CrossRef]
- Li, J.; Xiang, Y.; Jia, H.; Chen, L. Analysis of Total Factor Energy Efficiency and Its Influencing Factors on Key Energy-Intensive Industries in the Beijing-Tianjin-Hebei Region. Sustainability 2018, 10, 111. [Google Scholar] [CrossRef]
- Zhang, Y. A Study on CO2 Emission Transfer of Different Industries in Beijing-Tianjin-Hebei Region Based on Complex Network. Master’s Thesis, North China Electric Power University, Beijing, China, 2021. [Google Scholar] [CrossRef]
- Han, N.; Luo, X.-Y. Carbon emission peak prediction and reduction potential in Beijing-Tianjin-Hebei region from the perspective of multiple scenarios. J. Nat. Resour. 2022, 37, 1277–1288. [Google Scholar] [CrossRef]
- Ou, J.; Liu, X.; Li, X.; Shi, X. Mapping Global Fossil Fuel Combustion CO2 Emissions at High Resolution by Integrating Nightlight, Population Density, and Traffic Network Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1674–1684. [Google Scholar] [CrossRef]
- Su, Y.; Chen, X.; Ye, Y.; Wu, Q.; Zhang, H.; Huang, N.; Kuang, Y. The characteristics and mechanisms of carbon emissions from energy consumption in China using DMSP/OLS night light imageries. Acta Geogr. Sin. 2013, 68, 1513–1526. [Google Scholar]
- Zhao, N.; Han, S.; Wang, T. How Does Industrial Restructuring Affect Energy Development in China?—Research on Night Light. China Econ. Stat. Q. 2018, 2, 176–193. [Google Scholar]
- Ghosh, T.; Elvidge, C.D.; Sutton, P.; Baugh, K.E.; Ziskin, D.; Tuttle, B.T. Creating a Global Grid of Distributed Fossil Fuel CO2 Emissions from Nighttime Satellite Imagery. Energies 2010, 3, 1895–1913. [Google Scholar] [CrossRef]
Data Set | Description | Time Quantum | Source |
---|---|---|---|
DMSP-OLS | 1000 m stable NL data | 1992–2013 | NOAA/NGDC (https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html (accessed on 25 April 2022)) |
NPP-VIIRS | 500 m NL data | 2013–2021 | NOAA/NGDC (https://www.ngdc.noaa.gov/eog/viirs/download_ut_mos.html (accessed on 25 April 2022)) |
EVI | Vegetation Index | 2008–2013 | Google Earth Engine (https://lpdaac.usgs.gov/products/mod13a2v061 (accessed on 12 June 2022)) |
CO2 Emission | 25 km CO2 emission data | 2008–2017 | Multi-resolution Emission Inventory for China (http://meicmodel.org (accessed on 5 May 2022)) |
CO2 Concentration | 25 km CO2 concentration | 2013–2017 | Gosat Project (https://data2.gosat.nies.go.jp/gallery/fts_l2_swir_co2_gallery_en.html (accessed on 5 May 2022)) |
Administrative boundaries of China [19] | Vector files of Chinese provinces and cities | National Geographic Center of China (http://www.ngcc.cn/ngcc (accessed on 24 April 2022)) |
Sensor Number | a | b | c | R2 |
---|---|---|---|---|
F16–F18 | −0.004556 | 1.257 | 1.016 | 0.9172 |
F16–F15 | 0.001658 | 0.835 | −0.178 | 0.9402 |
F15–F14 | 0.00005344 | 1.042 | 0.444 | 0.8766 |
F14–F12 | −0.006385 | 1.371 | −0.699 | 0.9460 |
F12–F10 | 0.002600 | 0.675 | 0.946 | 0.8743 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, C.; Gong, W.; Gao, Z.; Kong, D.; Wei, R.; Ma, X. Correlation Analysis of CO2 Concentration Based on DMSP-OLS and NPP-VIIRS Integrated Data. Remote Sens. 2022, 14, 4181. https://doi.org/10.3390/rs14174181
Zuo C, Gong W, Gao Z, Kong D, Wei R, Ma X. Correlation Analysis of CO2 Concentration Based on DMSP-OLS and NPP-VIIRS Integrated Data. Remote Sensing. 2022; 14(17):4181. https://doi.org/10.3390/rs14174181
Chicago/Turabian StyleZuo, Chen, Wei Gong, Zhiyu Gao, Deyi Kong, Ruyi Wei, and Xin Ma. 2022. "Correlation Analysis of CO2 Concentration Based on DMSP-OLS and NPP-VIIRS Integrated Data" Remote Sensing 14, no. 17: 4181. https://doi.org/10.3390/rs14174181
APA StyleZuo, C., Gong, W., Gao, Z., Kong, D., Wei, R., & Ma, X. (2022). Correlation Analysis of CO2 Concentration Based on DMSP-OLS and NPP-VIIRS Integrated Data. Remote Sensing, 14(17), 4181. https://doi.org/10.3390/rs14174181