The Impact of Future Sea-Level Rise on Low-Lying Subsiding Coasts: A Case Study of Tavoliere Delle Puglie (Southern Italy)
Abstract
:1. Introduction
2. Study Area: The Gulf of Manfredonia
3. Materials and Methods
3.1. Topographic Survey of the Coastal Plain
3.2. Vertical Land Movements
3.3. Modeling Long-Term Flooding and Shoreline Retreat
3.4. Modeling Storm Flooding
3.5. Evaluation of Assets Potentially Exposed to Sea-Level Rise
4. Results and Discussions
4.1. Sea-Level-Rise Projections
4.2. Shoreline Erosion and Flooding
4.3. Land-Use and Surface Loss due to Sea-Level Rise
5. Conclusions
- accelerated RSLR;
- loss of land and socioeconomic effects;
- changes in land use in the Tavoliere delle Puglie, since the sea-level rise and storms under SLR conditions could lead to up to 5 km of inland sea extension;
- groundwater depletion and pollution due to saline wedge with related effects on agricultural and urban activities.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel of Climate Change. IPCC Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, MA, USA, 2021; p. 3949. [Google Scholar]
- Pörtner, H.-O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Alegría, A.; Nicolai, M.; Okem, A.; et al. (Eds.) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Working Group II Technical Support Unit: Geneva, Switzerland, 2019; p. 765. [Google Scholar]
- Ezer, T.; Atkinson, L.P. Accelerated Flooding along the U.S. East Coast: On the Impact of Sea-Level Rise, Tides, Storms, the Gulf Stream, and the North Atlantic Oscillations. Earth’s Future 2014, 2, 362–382. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Garcin, M.; Yates, M.; Idier, D.; Meyssignac, B. Approaches to Evaluate the Recent Impacts of Sea-Level Rise on Shoreline Changes. Earth Sci. Rev. 2014, 138, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Anzidei, M.; Scicchitano, G.; Scardino, G.; Bignami, C.; Tolomei, C.; Vecchio, A.; Serpelloni, E.; De Santis, V.; Monaco, C.; Milella, M.; et al. Relative Sea-Level Rise Scenario for 2100 along the Coast of South Eastern Sicily (Italy) by InSAR Data, Satellite Images and High-Resolution Topography. Remote Sens. 2021, 13, 1108. [Google Scholar] [CrossRef]
- Vacchi, M.; Joyse, K.M.; Kopp, R.E.; Marriner, N.; Kaniewski, D.; Rovere, A. Climate Pacing of Millennial Sea-Level Change Variability in the Central and Western Mediterranean. Nat. Commun. 2021, 12, 4013. [Google Scholar] [CrossRef]
- Anzidei, M. SAVEMEDCOASTS. Un progetto europeo di protezione civile per la valutazione degli impatti di aumento del livello marino e dei rischi costieri nel Mediterraneo. GEOmedia 2018, 22, 42–45. [Google Scholar]
- Anzidei, M.; Carluccio, R.; D’Ajello Caracciolo, F.; Esposito, A.; Nicolosi, I.; Pietrantonio, G.; Vecchio, A.; Carmisciano, C.; Chiappini, M.; Chiocci, F.; et al. Flooding Scenarios Due to Land Subsidence and Sea-Level Rise: A Case Study for Lipari Island (Italy). Terra Nova 2016, 29, 44–51. [Google Scholar] [CrossRef]
- Anzidei, M.; Doumaz, F.; Vecchio, A.; Serpelloni, E.; Pizzimenti, L.; Civico, R.; Greco, M.; Martino, G.; Enei, F. Sea Level Rise Scenario for 2100 A.D. in the Heritage Site of Pyrgi (Santa Severa, Italy). J. Mar. Sci. Eng. 2020, 8, 64. [Google Scholar] [CrossRef] [Green Version]
- Aucelli, P.P.C.; Di Paola, G.; Incontri, P.; Rizzo, A.; Vilardo, G.; Benassai, G.; Buonocore, B.; Pappone, G. Coastal Inundation Risk Assessment Due to Subsidence and Sea Level Rise in a Mediterranean Alluvial Plain (Volturno Coastal Plain–Southern Italy). Estuar. Coast. Shelf Sci. 2017, 198, 597–609. [Google Scholar] [CrossRef]
- Antonioli, F.; Falco, G.D.; Presti, V.L.; Moretti, L.; Scardino, G.; Anzidei, M.; Bonaldo, D.; Carniel, S.; Leoni, G.; Furlani, S.; et al. Relative Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of the Mediterranean Sea. Water 2020, 12, 2173. [Google Scholar] [CrossRef]
- Di Paola, G.; Rizzo, A.; Benassai, G.; Corrado, G.; Matano, F.; Aucelli, P.P.C. Sea-Level Rise Impact and Future Scenarios of Inundation Risk along the Coastal Plains in Campania (Italy). Environ. Earth Sci. 2021, 80, 608. [Google Scholar] [CrossRef]
- Vött, A.; Bruins, H.J.; Gawehn, M.; Goodman-Tchernov, B.N.; De Martini, P.M.; Kelletat, D.; Mastronuzzi, G.; Reicherter, K.; Röbke, B.R.; Scheffers, A.; et al. Publicity Waves Based on Manipulated Geoscientific Data Suggesting Climatic Trigger for Majority of Tsunami Findings in the Mediterranean–Response to ‘Tsunamis in the Geological Record: Making Waves with a Cautionary Tale from the Mediterranean’ by Marriner et al. (2017). Z. Geomorphol. 2019, 62, 7–45. [Google Scholar] [CrossRef]
- Biolchi, S.; Denamiel, C.; Devoto, S.; Korbar, T.; Macovaz, V.; Scicchitano, G.; Vilibić, I.; Furlani, S. Impact of the October 2018 Storm Vaia on Coastal Boulders in the Northern Adriatic Sea. Water 2019, 11, 2229. [Google Scholar] [CrossRef] [Green Version]
- Ericson, J.P.; Vörösmarty, C.J.; Dingman, S.L.; Ward, L.G.; Meybeck, M. Effective Sea-Level Rise and Deltas: Causes of Change and Human Dimension Implications. Glob. Planet. Change 2006, 50, 63–82. [Google Scholar] [CrossRef]
- Lambeck, K.; Antonioli, F.; Purcell, A.; Silenzi, S. Sea-Level Change along the Italian Coast for the Past 10,000 Yr. Quat. Sci. Rev. 2004, 23, 1567–1598. [Google Scholar] [CrossRef]
- Lambeck, K.; Woodroffe, C.; Antonioli, F.; Anzidei, M.; Gehrels, W.; Laborel, J.; Wright, A. Paleoenvironmental Records, Geophysical Modeling, and Reconstruction of Sea-Level Trends and Variability on Centennial and Longer Timescales. Fac. Sci. Pap. Arch. 2010, c04, 61–121. [Google Scholar]
- Rovere, A.; Stocchi, P.; Vacchi, M. Eustatic and Relative Sea Level Changes. Curr. Clim. Chang. Rep. 2016, 2, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Caldara, M.; Capolongo, D.; Damato, B.; Pennetta, L. Can the Ground Laser Scanning Technology Be Useful for Coastal Defenses Monitoring? Ital. J. Eng. Geol. Environ. 2006, 1, 35–49. [Google Scholar]
- Cianflone, G.; Tolomei, C.; Brunori, C.A.; Monna, S.; Dominici, R. Landslides and Subsidence Assessment in the Crati Valley (Southern Italy) Using InSAR Data. Geosciences 2018, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Tosi, L.; Lio, C.D.; Teatini, P.; Strozzi, T. Land Subsidence in Coastal Environments: Knowledge Advance in the Venice Coastland by TerraSAR-X PSI. Remote Sens. 2018, 10, 1191. [Google Scholar] [CrossRef] [Green Version]
- Cenni, N.; Fiaschi, S.; Fabris, M. Monitoring of Land Subsidence in the Po River Delta (Northern Italy) Using Geodetic Networks. Remote Sens. 2021, 13, 1488. [Google Scholar] [CrossRef]
- Antonioli, F.; Anzidei, M.; Amorosi, A.; Lo Presti, V.; Mastronuzzi, G.; Deiana, G.; De Falco, G.; Fontana, A.; Fontolan, G.; Lisco, S.; et al. Sea-Level Rise and Potential Drowning of the Italian Coastal Plains: Flooding Risk Scenarios for 2100. Quat. Sci. Rev. 2017, 158, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, A.; Anzidei, M.; Serpelloni, E.; Florindo, F. Natural Variability and Vertical Land Motion Contributions in the Mediterranean Sea-Level Records over the Last Two Centuries and Projections for 2100. Water 2019, 11, 1480. [Google Scholar] [CrossRef] [Green Version]
- Zanchettin, D.; Bruni, S.; Raicich, F.; Lionello, P.; Adloff, F.; Androsov, A.; Antonioli, F.; Artale, V.; Carminati, E.; Ferrarin, C.; et al. Sea-Level Rise in Venice: Historic and Future Trends (Review Article). Nat. Hazards Earth Syst. Sci. 2021, 21, 2643–2678. [Google Scholar] [CrossRef]
- Scicchitano, G.; Scardino, G.; Monaco, C.; Piscitelli, A.; Milella, M.; De Giosa, F.; Mastronuzzi, G. Comparing Impact Effects of Common Storms and Medicanes along the Coast of South-Eastern Sicily. Mar. Geol. 2021, 439, 106556. [Google Scholar] [CrossRef]
- Caldara, M.; Pennetta, L.; Simone, O. Holocene Evolution of the Salpi Lagoon (Puglia, Italy). J. Coast. Res. 2002, 36, 124–133. [Google Scholar] [CrossRef]
- Boenzi, F.; Caldara, M.; Capolongo, D.; Dellino, P.; Piccarreta, M.; Simone, O. Late Pleistocene–Holocene Landscape Evolution in Fossa Bradanica, Basilicata (Southern Italy). Geomorphology 2008, 102, 297–306. [Google Scholar] [CrossRef]
- De Santis, V.; Caldara, M.; Pennetta, L. The Marine and Alluvial Terraces of Tavoliere Di Puglia Plain (Southern Italy). J. Maps 2014, 10, 114–125. [Google Scholar] [CrossRef]
- Doglioni, C.; Mongelli, F.; Pieri, P. The Puglia Uplift (SE Italy): An Anomaly in the Foreland of the Apenninic Subduction Due to Buckling of a Thick Continental Lithosphere. Tectonics 1994, 13, 1309–1321. [Google Scholar] [CrossRef]
- Ricchetti, G.; Ciaranfi, N.; Luperto Sinni, E.; Mongelli, F.; Pieri, P. Geodinamica Ed Evoluzione Sedimentaria e Tettonica Dell’Avampaese Apulo. Mem. Della Soc. Geol. Ital. 1988, 41, 57–82. [Google Scholar]
- De Santis, V.; Caldara, M.; de Torres, T.; Ortiz, J.E. Stratigraphic Units of the Apulian Tavoliere Plain (Southern Italy): Chronology, Correlation with Marine Isotope Stages and Implications Regarding Vertical Movements. Sediment. Geol. 2010, 228, 255–270. [Google Scholar] [CrossRef] [Green Version]
- De Santis, V.; Caldara, M.; Pennetta, L.; Torres, T.; Ortiz, J.E. Unconformity-Bounded Stratigraphic Units (UBSUs) in an Italian Alluvial-Plain Area: Recognizing and Dating. J. Sediment. Res. 2013, 83, 96–114. [Google Scholar] [CrossRef]
- Doglioni, C.; Tropeano, M.; Mongelli, F.; Pieri, P. Middle-Late Pleistocene Uplift of Puglia: An “Anomaly” in the Apenninic Foreland. Mem. Soc. Geol. Ital. 1996, 51, 101–117. [Google Scholar]
- De Santis, V.; Caldara, M.; Torres, T.; Ortiz, J.E.; Sánchez-Palencia, Y. The Role of Beach Ridges, Spits, or Barriers in Understanding Marine Terraces Processes on Loose or Semiconsolidated Substrates: Insights from the Givoni of the Gulf of Taranto (Southern Italy). Geol. J. 2019, 55, 2951–2975. [Google Scholar] [CrossRef]
- Caldara, M.; Centenaro, E.; Mastronuzzi, G.; Sansò, P.; Sergio, A. Features and Present Evolution of Apulian Coast (Southern Italy). J. Coast. Res. 1998, 26, 55–64. [Google Scholar]
- De Santis, V.; Caldara, M.; Torres, T.; Ortiz, J.E. Two Middle Pleistocene Warm Stages in the Terrace Deposits of the Apulia Region (Southern Italy). Quat. Int. 2014, 332, 2–18. [Google Scholar] [CrossRef]
- De Santis, V.; Caldara, M.; Marsico, A.; Capolongo, D.; Pennetta, L. Evolution of the Ofanto River Delta from the ‘Little Ice Age’ to Modern Times: Implications of Large-Scale Synoptic Patterns. Holocene 2018, 28, 1948–1967. [Google Scholar] [CrossRef]
- De Santis, V.; Caldara, M.; Pennetta, L. “Continuous” Backstepping of Holocene Coastal Barrier Systems into Incised Valleys: Insights from the Ofanto and Carapelle-Cervaro Valleys. Water 2020, 12, 1799. [Google Scholar] [CrossRef]
- Boenzi, F.; Caldara, M.; Pennetta, L.; Simone, O. Environmental Aspects Related to the Physical Evolution of Some Wetlands Along the Adriatic Coast of Apulia (Southern Italy): A Review. J. Coast. Res. 2006, 1, 170–175. [Google Scholar]
- De Santis, V.; Caldara, M. The 5.5–4.5 Kyr Climatic Transition as Recorded by the Sedimentation Pattern of Coastal Deposits of the Apulia Region, Southern Italy. Holocene 2015, 25, 1313–1329. [Google Scholar] [CrossRef]
- Grant, K.M.; Rohling, E.J.; Ramsey, C.B.; Cheng, H.; Edwards, R.L.; Florindo, F.; Heslop, D.; Marra, F.; Roberts, A.P.; Tamisiea, M.E.; et al. Sea-Level Variability over Five Glacial Cycles. Nat. Commun. 2014, 5, 5076. [Google Scholar] [CrossRef] [Green Version]
- Rohling, E.J.; Foster, G.L.; Grant, K.M.; Marino, G.; Roberts, A.P.; Tamisiea, M.E.; Williams, F. Sea-Level and Deep-Sea-Temperature Variability over the Past 5.3 Million Years. Nature 2014, 508, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Ferranti, L.; Antonioli, F.; Anzidei, M.; Monaco, C.; Stocchi, P. The Timescale and Spatial Extent of Vertical Tectonic Motions in Italy: Insights from Relative Sea-Level Changes Studies. J. Virtual Explor. 2010, 36, 3–34. [Google Scholar] [CrossRef]
- Triggiani, M.; Refice, A.; Capolongo, D.; Bovenga, F.; Caldara, M. Investigation of Subsidence in the Manfredonia Gulf (Southern Italy) through Multitemporal DInSAR Techniques; EGU General Assembly: Wien, Austria, 2009; p. 7341. [Google Scholar]
- Apulia Region. Piano Di Tutela Delle Acque, Aggiornamento 2015–2021. Relazione Generale; Dipartimento Agricoltura Sviluppo Rurale Ed Ambientale Sezione Risorse Idriche: Bari, Italia, 2019; Volume 1, pp. 1–188. [Google Scholar]
- Cotecchia, V.; Magri, G. Idrogeologia Del Gargano. Geol. Appl. E Idrogeol. 1966, 1, 1–80. [Google Scholar]
- Mongelli, F.; Ricchetti, G. Heat Flow along the Candelaro Fault—Gargano Headland (Italy). Geothermics 1970, 2, 450–458. [Google Scholar] [CrossRef]
- Maggiore, M.; Mongelli, F. Hydrogeothermal Model of Ground-Water Supply to San Nazario Spring (Gargano, Southern Italy). In Proceedings of the International Conference on Enviromental Changes in Karst Areas, Padova, Italy, 27 September 1991; Quaderni del Dipartimento di Geografia n. 13, Università di Padova: Padova, Italy, 1991; pp. 307–324. [Google Scholar]
- Grassi, D.; Tadolini, T. Caratteristiche Chimico-Fisiche Delle Acque Della Falda Carsica Del Gargano. CNR-GNDCI 1992, 538, 375–416. [Google Scholar]
- Apulia Region. Piano Regionale Risanamento Delle Acque. Boll. Uff. Reg. Puglia Bari Italy 1984, 1, 57. [Google Scholar]
- Progetto PST-Dati Lidar. Available online: http://www.pcn.minambiente.it/mattm/progetto-pst-dati-lidar/ (accessed on 7 January 2021).
- Santillan, J.R.; Makinano-Santillan, M. Vertical Accuracy Assessment of 30-M Resolution Alos, Aster, and Srtm Global Dems Over Northeastern Mindanao, Philippines. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41B4, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Alganci, U.; Besol, B.; Sertel, E. Accuracy Assessment of Different Digital Surface Models. ISPRS Int. J. Geo-Inf. 2018, 7, 114. [Google Scholar] [CrossRef] [Green Version]
- Uuemaa, E.; Ahi, S.; Montibeller, B.; Muru, M.; Kmoch, A. Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 2020, 12, 3482. [Google Scholar] [CrossRef]
- Zingaro, M.; La Salandra, M.; Colacicco, R.; Roseto, R.; Petio, P.; Capolongo, D. Suitability Assessment of Global, Continental and National Digital Elevation Models for Geomorphological Analyses in Italy. Trans. GIS 2021, 25, 2283–2308. [Google Scholar] [CrossRef]
- Anzidei, M.; Scicchitano, G.; Tarascio, S.; de Guidi, G.; Monaco, C.; Barreca, G.; Mazza, G.; Serpelloni, E.; Vecchio, A. Coastal Retreat and Marine Flooding Scenario for 2100: A Case Study along the Coast of Maddalena Peninsula (Southeastern Sicily). Geogr. Fis. E Din. Quat. 2018, 41, 5–16. [Google Scholar] [CrossRef]
- Hooper, A. A Multi-Temporal InSAR Method Incorporating Both Persistent Scatterer and Small Baseline Approaches. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Rosi, A.; Agostini, A.; Tofani, V.; Casagli, N. A Procedure to Map Subsidence at the Regional Scale Using the Persistent Scatterer Interferometry (PSI) Technique. Remote Sens. 2014, 6, 10510–10522. [Google Scholar] [CrossRef]
- Avallone, A.; Latorre, D.; Serpelloni, E.; Cavaliere, A.; Herrero, A.; Cecere, G.; D’Agostino, N.; D’Ambrosio, C.; Devoti, R.; Giuliani, R.; et al. Coseismic Displacement Waveforms for the 2016 August 24 Mw 6.0 Amatrice Earthquake (Central Italy) Carried out from High-Rate GPS Data. Ann. Geophys. 2016, 59, 1–11. [Google Scholar] [CrossRef]
- Serpelloni, E.; Faccenna, C.; Spada, G.; Dong, D.; Williams, S.D.P. Vertical GPS Ground Motion Rates in the Euro-Mediterranean Region: New Evidence of Velocity Gradients at Different Spatial Scales along the Nubia-Eurasia Plate Boundary. J. Geophys. Res. Solid Earth 2013, 118, 6003–6024. [Google Scholar] [CrossRef] [Green Version]
- Devoti, R.; D’Agostino, N.; Serpelloni, E.; Pietrantonio, G.; Riguzzi, F.; Avallone, A.; Cavaliere, A.; Cheloni, D.; Cecere, G.; D’Ambrosio, C.; et al. A Combined Velocity Field of the Mediterranean Region. Ann. Geophys. 2017, 60, 0215. [Google Scholar] [CrossRef] [Green Version]
- Serpelloni, E.; Cavaliere, A.; Martelli, L.; Pintori, F.; Anderlini, L.; Borghi, A.; Randazzo, D.; Bruni, S.; Devoti, R.; Perfetti, P.; et al. Surface Velocities and Strain-Rates in the Euro-Mediterranean Region From Massive GPS Data Processing. Front. Earth Sci. 2022, 10, 1–22. [Google Scholar] [CrossRef]
- Farolfi, G.; Del Soldato, M.; Bianchini, S.; Casagli, N. A Procedure to Use GNSS Data to Calibrate Satellite PSI Data for the Study of Subsidence:An Example from the North-Western Adriatic Coast (Italy). Eur. J. Remote Sens. 2019, 52, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Anderlini, L.; Serpelloni, E.; Tolomei, C.; De Martini, P.M.; Pezzo, G.; Gualandi, A.; Spada, G. New Insights into Active Tectonics and Seismogenic Potential of the Italian Southern Alps from Vertical Geodetic Velocities. Solid Earth 2020, 11, 1681–1698. [Google Scholar] [CrossRef]
- Scardino, G.; Sabatier, F.; Scicchitano, G.; Piscitelli, A.; Milella, M.; Vecchio, A.; Anzidei, M.; Mastronuzzi, G. Sea-Level Rise and Shoreline Changes Along an Open Sandy Coast: Case Study of Gulf of Taranto, Italy. Water 2020, 12, 1414. [Google Scholar] [CrossRef]
- Theiler, E.; Himmelstoss, E.; Zichichi, J.; Ergul, A. Digital Shoreline Analysis System (DSAS) Version 4.0-An ArcGIS Extension for Calculating Shoreline Change (Ver. 4.4, July 2017). U.S. Geol. Surv. Open-File Rep. 2017, 1, 1278. [Google Scholar]
- Lionello, P.; Conte, D.; Marzo, L.; Scarascia, L. The Contrasting Effect of Increasing Mean Sea Level and Decreasing Storminess on the Maximum Water Level during Storms along the Coast of the Mediterranean Sea in the Mid 21st Century. Glob. Planet. Chang. 2017, 151, 80–91. [Google Scholar] [CrossRef]
- McCall, R.T.; Masselink, G.; Poate, T.G.; Roelvink, J.A.; Almeida, L.P.; Davidson, M.; Russell, P.E. Modelling Storm Hydrodynamics on Gravel Beaches with XBeach-G. Coast. Eng. 2014, 91, 231–250. [Google Scholar] [CrossRef] [Green Version]
- Roelvink, D.; Costas, S. Coupling Nearshore and Aeolian Processes: XBeach and Duna Process-Based Models. Environ. Model. Softw. 2019, 115, 98–112. [Google Scholar] [CrossRef]
- Ferrarin, C.; Bajo, M.; Benetazzo, A.; Cavaleri, L.; Chiggiato, J.; Davison, S.; Davolio, S.; Lionello, P.; Orlic, M.; Umgiesser, G. Local and Large-Scale Controls of the Exceptional Venice Floods of November 2019. Prog. Oceanogr. 2021, 197, 102628. [Google Scholar] [CrossRef]
- Ferrarin, C.; Lionello, P.; Orlić, M.; Raicich, F.; Salvadori, G. Venice as a Paradigm of Coastal Flooding under Multiple Compound Drivers. Sci. Rep. 2022, 12, 5754. [Google Scholar] [CrossRef] [PubMed]
- Home-S.I.T.-SIT Puglia. Available online: https://pugliacon.regione.puglia.it/web/sit-puglia-sit/home (accessed on 18 August 2022).
- De Santis, V.; Scardino, G.; Ortiz, J.E.; Sánchez-Palencia, Y.; Caldara, M. Pleistocene terracing phases in the metropolitan area of Bari—AAR dating and deduced uplift rates of the Apulian Foreland. ROL 2021, 54, 49–61. [Google Scholar] [CrossRef]
- De Santis, V.; Scardino, G.; Meschis, M.; Ortiz, J.E.; Sánchez-Palencia, Y.; Caldara, M. Refining the Middle-Late Pleistocene Chronology of Marine Terraces and Uplift History in a Sector of the Apulian Foreland (Southern Italy) by Applying a Synchronous Correlation Technique and Amino Acid Racemization to Patella Spp. and Thetystrombus Latus. Ital. J. Geosci. 2021, 140, 438–463. [Google Scholar] [CrossRef]
- Cocchi, L.; Stefanelli, P.; Carmisciano, C.; Caratori Tontini, F.; Taramaschi, L.; Cipriani, S. Marine Archaeogeophysical Prospection of Roman Salapia Settlement (Puglia, Italy): Detecting Ancient Harbour Remains. Archaeol. Prospect. 2012, 19, 89–101. [Google Scholar] [CrossRef]
- De Serio, F.; Armenio, E.; Mossa, M.; Petrillo, A.F. How to Define Priorities in Coastal Vulnerability Assessment. Geosciences 2018, 8, 415. [Google Scholar] [CrossRef] [Green Version]
- Apollonio, C.; Bruno, M.F.; Iemmolo, G.; Molfetta, M.G.; Pellicani, R. Flood Risk Evaluation in Ungauged Coastal Areas: The Case Study of Ippocampo (Southern Italy). Water 2020, 12, 1466. [Google Scholar] [CrossRef]
- Fiesoletti, F.; Spagnoli, F.; Specchiulli, A. Coastal Monitoring Programme in the Gulf of Manfredonia (Southern Adriatic Sea): Preliminary Results. In Maritime lndustry, Ocean Engineering and Coastal Resources; Soares, G., Kolev, P., Eds.; Taylor & Francis Ltd.: London, UK, 2008; pp. 721–728. ISBN 978-0-415-45523-7. [Google Scholar]
- Ferrarin, C.; Valentini, A.; Vodopivec, M.; Klaric, D.; Massaro, G.; Bajo, M.; Pascalis, F.D.; Fadini, A.; Ghezzo, M.; Menegon, S.; et al. Integrated Sea Storm Management Strategy: The 29 October 2018 Event in the Adriatic Sea. Nat. Hazards Earth Syst. Sci. 2020, 20, 73–93. [Google Scholar] [CrossRef] [Green Version]
- Sartini, L.; Mentaschi, L.; Besio, G. Comparing Different Extreme Wave Analysis Models for Wave Climate Assessment along the Italian Coast. Coast. Eng. 2015, 100, 37. [Google Scholar] [CrossRef]
- Masciale, R.; Barca, E.; Passarella, G. A Methodology for Rapid Assessment of the Environmental Status of the Shallow Aquifer of “Tavoliere Di Puglia” (Southern Italy). Environ. Monit. Assess. 2010, 177, 245–261. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, G.; Foglia, L.; Giudici, M.; Mehl, S.; Margiotta, S.; Negri, S.L. Effects of Different Boundary Conditions on the Simulation of Groundwater Flow in a Multi-Layered Coastal Aquifer System (Taranto Gulf, Southern Italy). Hydrogeol. J. 2017, 25, 2123–2138. [Google Scholar] [CrossRef]
- Margiotta, S.; Marini, G.; Fay, S.; D’Onghia, F.M.; Liso, I.S.; Parise, M.; Pinna, M. Hydro-Stratigraphic Conditions and Human Activity Leading to Development of a Sinkhole Cluster in a Mediterranean Water Ecosystem. Hydrology 2021, 8, 111. [Google Scholar] [CrossRef]
- Apulia Region. Piano Di Tutela Delle Acque (PTA); Regional Water Protection Plan (PTA); Water Protection Service: Bari, Italy, 2009; Volume 1, pp. 1–103. [Google Scholar]
Type of DSM | RMSE (m) | SD (m) | Mean Error (m) |
---|---|---|---|
TLS DSM | 0.32 | 0.19 | 0.26 |
ALS-DSM | 0.28 | 0.18 | 0.21 |
Merged DSM | 0.35 | 0.23 | 0.26 |
Area 1 | Area 2 | Area 3 | Area 4 | Area 5 | Area 6 | ||
---|---|---|---|---|---|---|---|
SSP1-2.6 | 2050 | 139.65 ± 109.13 mm | 158.55 ± 109.04 mm | 351.15 ± 120.23 mm | 249.15 ± 117.81 mm | 186.15 ± 117.81 mm | 133.8 ± 106.53 mm |
2100 | 382.52 ± 247.25 mm | 432.92 ± 246.96 mm | 946.52 ± 281.48 mm | 674.52 ± 274.1 mm | 506.52 ± 274.1 mm | 361.16 ± 240.13 mm | |
2150 | 602.09 ± 410.76 mm | 683.99 ± 410.3 mm | 1518.59 ± 465.31 mm | 1076.59 ± 453.53 mm | 803.59 ± 453.53 mm | 565.7 ± 403.48 mm | |
SSP5-8.5 | 2050 | 178.23 ± 108.85 mm | 197.13 ± 108.75 mm | 389.73 ± 119.97 mm | 287.73 ± 117.54 mm | 224.73 ± 117.54 mm | 172.46 ± 107.36 mm |
2100 | 666.15 ± 275.31 mm | 716.55 ± 275.05 mm | 1230.15 ± 306.42 mm | 958.15 ± 299.66 mm | 790.15 ± 299.66 mm | 654.39 ± 269.06 mm | |
2150 | 1148.62 ± 520.98 mm | 1230.52 ± 520.62 mm | 2065.12 ± 564.99 mm | 1623.12 ± 555.33 mm | 1350.12 ± 555.33 mm | 1132.09 ± 509.61 mm |
Study Areas | Sites | VLM Rates | Effective Shoreline Change Rate |
---|---|---|---|
Area 1 | Manfredonia | −0.45 ± 0.25 mm/yr | −0.196 ± 0.06 m/yr |
Area 2 | Siponto sandy coast | −1.08 ± 0.2 mm/yr | −1.079 ± 0.32 m/yr |
Area 3 | Ippocampo | −7.5 ± 1.7 mm/yr | −2.983 ± 0.89 m/yr |
Area 4 | Zapponeta | −4.1 ± 1.5 mm/yr | −2.733 ± 0.82 m/yr |
Area 5 | Torre Pietra | −2 ± 1.5 mm/yr | −2.762 ± 0.83 m/yr |
Area 6 | Margherita di Savoia | −0.13 ± 0.08 mm/yr | −5.825 ± 1.75 m/yr |
Study Areas | Flooding Surface SSP1-2.6 (km2) | Flooding Surface SSP5-8.5 (km2) | ||||
---|---|---|---|---|---|---|
2050 | 2100 | 2150 | 2050 | 2100 | 2150 | |
Area 1 | 0.114 | 0.325 | 0.418 | 0.147 | 0.772 | 0.906 |
Area 2 | 1.453 | 5.394 | 8.102 | 1.913 | 23.739 | 23.739 |
Area 3 | 0.415 | 3.696 | 6.908 | 0.755 | 20.709 | 22.289 |
Area 4 | 4.854 | 16.635 | 21.474 | 9.161 | 20.331 | 35.448 |
Area 5 | 35.735 | 45.615 | 49.171 | 35.736 | 45.615 | 55.071 |
Area 6 | 1.963 | 4.872 | 6.072 | 2.785 | 7.53 | 10.289 |
Total | 44.534 | 76.537 | 92.145 | 50.497 | 118.696 | 147.742 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scardino, G.; Anzidei, M.; Petio, P.; Serpelloni, E.; De Santis, V.; Rizzo, A.; Liso, S.I.; Zingaro, M.; Capolongo, D.; Vecchio, A.; et al. The Impact of Future Sea-Level Rise on Low-Lying Subsiding Coasts: A Case Study of Tavoliere Delle Puglie (Southern Italy). Remote Sens. 2022, 14, 4936. https://doi.org/10.3390/rs14194936
Scardino G, Anzidei M, Petio P, Serpelloni E, De Santis V, Rizzo A, Liso SI, Zingaro M, Capolongo D, Vecchio A, et al. The Impact of Future Sea-Level Rise on Low-Lying Subsiding Coasts: A Case Study of Tavoliere Delle Puglie (Southern Italy). Remote Sensing. 2022; 14(19):4936. https://doi.org/10.3390/rs14194936
Chicago/Turabian StyleScardino, Giovanni, Marco Anzidei, Paolo Petio, Enrico Serpelloni, Vincenzo De Santis, Angela Rizzo, Serena Isabella Liso, Marina Zingaro, Domenico Capolongo, Antonio Vecchio, and et al. 2022. "The Impact of Future Sea-Level Rise on Low-Lying Subsiding Coasts: A Case Study of Tavoliere Delle Puglie (Southern Italy)" Remote Sensing 14, no. 19: 4936. https://doi.org/10.3390/rs14194936
APA StyleScardino, G., Anzidei, M., Petio, P., Serpelloni, E., De Santis, V., Rizzo, A., Liso, S. I., Zingaro, M., Capolongo, D., Vecchio, A., Refice, A., & Scicchitano, G. (2022). The Impact of Future Sea-Level Rise on Low-Lying Subsiding Coasts: A Case Study of Tavoliere Delle Puglie (Southern Italy). Remote Sensing, 14(19), 4936. https://doi.org/10.3390/rs14194936