Analysis of Spatiotemporal Variation and Drivers of Ecological Quality in Fuzhou Based on RSEI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Pre-Processing
2.3. Methods
2.3.1. RSEI Index Calculation
2.3.2. Spatial Autocorrelation Analysis
2.3.3. Driver Selection
Geodetector
Geographically Weighted Regression
3. Results
3.1. Results of Ecological Environment Evaluation Based on RSEI
3.2. Spatial Autocorrelation Analysis of RSEI at Multiple Scales
3.2.1. Global Spatial Autocorrelation
3.2.2. Local Spatial Autocorrelation
3.3. RSEI Driver Analysis
3.3.1. Geodetector-Based Driving Factor Detection
3.3.2. Results of GWR-Based Regression Coefficients of Driving Factors
4. Discussion
4.1. Calculation of RSEI
4.2. Spatial Distribution Pattern of RSEI
4.3. Driving Forces of RSEI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Year | Sensors | Path/Row | Acquisition Date |
---|---|---|---|
2000 | Landsat TM | 118,042 119,042 | 19 April 2000; 5 May 2000; 6 June 2000; 8 July 2000; 24 July 2000; 9 August 2000; 10 September 2000; 26 September 2000; 12 May 2000; 13 June 2000; 29 June 2000; 15 July 2000; 31 July 2000; 1 September 2000; 17 September 2000 |
2005 | Landsat TM | 4 June 2005; 6 July 2005; 23 August 2005; 8 September 2005; 8 April 2005; 11 June 2005; 27 June 2005; 13 July 2005; 29 July 2005; 30 August 2005 | |
2010 | Landsat TM | 1 May 2010; 17 May 2010; 4 July 2010; 20 July 2010; 5 August 2010; 21 August 2010; 22 September 2010; 24 May 2010; 11 July 2010; 13 September 2010; 12 August 2010 | |
2015 | Landsat OLI | 13 April 2015; 29 April 2015; 15 May 2015; 16 June 2015; 2 July 2015; 18 July 2015; 3 August 2015; 19 August 2015; 4 September 2015; 4 April 2015; 7 June 2015; 23 June 2015; 25 July 2015; 26 August 2015; 11 September 2015; 27 September; 9 July 2015 | |
2020 | Landsat OLI | 10 April 2020; 26 April 2020; 13 June 2020; 29 June 2020; 15 July 2020; 16 August 2020; 1 September 2020; 17 September 2020; 1 April 2020; 17 April 2020; 3 May 2020; 19 May 2020; 20 June 2020; 6 July 2020; 22 July 2020; 7 August 2020; 23 August 2020 |
References
- Zhao, S.; Da, L.; Tang, Z.; Fang, H.; Song, K.; Fang, J. Ecological consequences of rapid urban expansion: Shanghai, China. Front. Ecol. Environ. 2006, 4, 341–346. [Google Scholar] [CrossRef]
- Shen, W.; Wu, J.; Grimm, N.B.; Hope, D. Effects of urbanization-induced environmental changes on ecosystem functioning in the Phoenix metropolitan region, USA. Ecosystems 2008, 11, 138–155. [Google Scholar] [CrossRef]
- Luo, W.; Bai, H.; Jing, Q.; Liu, T.; Xu, H. Urbanization-induced ecological degradation in Midwestern China: An analysis based on an improved ecological footprint model. Resour. Conserv. Recycl. 2018, 137, 113–125. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.C.; Chunho, L.I.U. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Liu, W.; Chen, W.; Peng, C. Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study. Ecol. Model. 2014, 291, 6–14. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; Maclvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Peng, W.; Kuang, T.; Tao, S. Quantifying influences of natural factors on vegetation NDVI changes based on geographical detector in Sichuan, western China. J. Clean. Prod. 2019, 233, 353–367. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Asner, G.P.; Scurlock, J.M.O.A.; Hicke, J. Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Glob. Ecol. Biogeogr. 2003, 12, 191–205. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrion, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Jiang, J.; Tian, G. Analysis of the impact of land use/land cover change on land surface temperature with remote sensing. Procedia Environ. Sci. 2010, 2, 571–575. [Google Scholar] [CrossRef]
- Du, L.; Song, N.; Liu, K.; Hou, J.; Hu, Y.; Zhu, Y.; Wan, X.; Wang, L.; Guo, Y. Comparison of two simulation methods of the temperature vegetation dryness index (TVDI) for drought monitoring in semi-arid regions of China. Remote Sens. 2017, 9, 177. [Google Scholar] [CrossRef]
- Rahman, S.; Mesev, V. Change vector analysis, tasseled cap, and NDVI-NDMI for measuring land use/cover changes caused by a sudden short-term severe drought: 2011 Texas event. Remote Sens. 2019, 11, 2217. [Google Scholar] [CrossRef]
- Yue, A.; Zhang, Z. Analysis and research on ecological situation change based on EI value. Green Sci. Technol. 2018, 14, 182–184. [Google Scholar]
- Wang, C.; Jiang, Q.; Shao, Y.; Sun, S.; Xiao, L.; Guo, J. Ecological environment assessment based on land use simulation: A case study in the Heihe River Basin. Sci. Total Environ. 2019, 697, 133928. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, H. Evaluation of ecological environmental quality and factor explanatory power analysis in western Chongqing, China. Ecol. Indic. 2021, 132, 108311. [Google Scholar] [CrossRef]
- Xu, H.Q. A remote sensing urban ecological index and its application. Acta Ecol. Sin. 2013, 33, 7853–7862. [Google Scholar]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Yue, H.; Liu, Y.; Li, Y.; Lu, Y. Eco-Environmental Quality Assessment in China’s 35 Major Cities Based on Remote Sensing Ecological Index. IEEE Access 2019, 7, 51295–51311. [Google Scholar] [CrossRef]
- Yuan, B.; Fu, L.; Zou, Y.; Zhang, S.; Chen, X.; Li, F.; Deng, Z.; Xie, Y. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 2021, 302, 126995. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, W.; Lu, N.; Huang, S.; Wu, C.; Wang, L.; Dai, F.; Kou, W. Assessment of spatial–temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China. Ecol. Indic. 2021, 125, 107518. [Google Scholar] [CrossRef]
- Liu, C.; Yang, M.; Hou, Y.; Zhao, Y.; Xue, X. Spatiotemporal evolution of island ecological quality under different urban densities: A comparative analysis of Xiamen and Kinmen Islands, southeast China. Ecol. Indic. 2021, 124, 107438. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef]
- Guo, G.; Wu, Z.; Chen, Y. Evaluation of spatially heterogeneous driving forces of the urban heat environment based on a regression tree model. Sustain. Cities Soc. 2020, 54, 101960. [Google Scholar] [CrossRef]
- Chen, M.; Luo, Y.; Shen, Y.; Han, Z.; Cui, Y. Driving force analysis of irrigation water consumption using principal component regression analysis. Agric. Water Manag. 2020, 234, 106089. [Google Scholar] [CrossRef]
- He, Y.X.; Yi, G.H.; Zhang, T.B. The EVI trends and driving factors in Red River Basin affected by the “corridor-corridorbarrier” function during 2000–2014. ACTA Ecol. Sin. 2018, 38, 2056–2064. [Google Scholar]
- Wu, J.; Li, J.; Peng, J.; Li, W.; Xu, G.; Dong, C. Applying land use regression model to estimate spatial variation of PM2. 5 in Beijing, China. Environ. Sci. Pollut. Res. 2015, 22, 7045–7061. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Lian, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Ju, H.; Zhang, Z.; Zuo, L.; Wang, J.; Zhang, S.; Wang, X.; Zhao, X. Driving forces and their interactions of built-up land expansion based on the geographical detector–a case study of Beijing, China. Int. J. Geogr. Inf. Sci. 2016, 30, 2188–2207. [Google Scholar] [CrossRef]
- Song, T.; Cheng, Y.; Liu, W.; Liu, H. Spatial difference and mechanisms of influence of geo-economy in the border areas of China. J. Geogr. Sci. 2017, 27, 1463–1480. [Google Scholar] [CrossRef]
- Zuo, S.; Dai, S.; Song, X.; Xu, C.; Liao, Y.; Chang, W.; Chen, Q.; Li, Y.; Tang, J.; Man, W.; et al. Determining the mechanisms that influence the surface temperature of urban forest canopies by combining remote sensing methods, ground observations, and spatial statistical models. Remote Sens. 2018, 10, 1814. [Google Scholar] [CrossRef]
- Liang, P.; Yang, X. Landscape spatial patterns in the Maowusu (Mu Us) Sandy Land, northern China and their impact factors. Catena 2016, 145, 321–333. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Bo, Y.; Xu, C.; Hu, M.; Huang, D. Identification of health risks of hand, foot and mouth disease in China using the geographical detector technique. Int. J. Environ. Res. Public Health 2014, 11, 3407–3423. [Google Scholar] [CrossRef]
- Sun, K.; Xu, Z.M. The impacts of human driving factors on grey water footprint in China using a GWR model. Chin. J. Geogr. Res. 2016, 35, 37–48. [Google Scholar]
- Li, S.; Zhao, Z.; Miaomiao, X.; Wang, Y. Investigating spatial non-stationary and scale-dependent relationships between urban surface temperature and environmental factors using geographically weighted regression. Environ. Model. Softw. 2010, 25, 1789–1800. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Chen, B.; Ma, J.; Dong, J.; Doughty, R.B.; Zhong, Q.; Qin, Y.; Dai, S.; et al. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 2020, 238, 110987. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Kogan, F.; Gitelson, A.; Zakarin, E.; Spivak, L.; Lebed, L. AVHRR-based spectral vegetation index for quantitative assessment of vegetation state and productivity. Photogramm. Eng. Remote Sens. 2003, 69, 899–906. [Google Scholar] [CrossRef]
- Crist, E.P. A TM tasseled cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Skoković, D.; Mattar, C.; Cristóbal, J. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Legendre, P. Spatial autocorrelation: Trouble or new paradigm? Ecology 1993, 74, 1659–1673. [Google Scholar] [CrossRef]
- Diniz-Filho, J.A.F.; Bini, L.M.; Hawkins, B.A. Spatial autocorrelation and red herrings in geographical ecology. Glob. Ecol. Biogeogr. 2003, 12, 53–64. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Spatiotemporal ecological vulnerability analysis with statistical correlation based on satellite remote sensing in Samara, Russia. J. Environ. Manag. 2021, 285, 112138. [Google Scholar] [CrossRef]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models & Applications; Taylor & Francis: Abingdon, UK, 1981. [Google Scholar]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Yang, X.; Meng, F.; Fu, P.; Zhang, Y.; Liu, Y. Spatiotemporal change and driving factors of the Eco-Environment quality in the Yangtze River Basin from 2001 to 2019. Ecol. Indic. 2021, 131, 108214. [Google Scholar] [CrossRef]
- Liu, Y.S.; Li, J.T. Geographic detection and optimizing decision of the differentiation mechanism of rural poverty in China. Acta Geogr. Sin. 2017, 72, 161–173. [Google Scholar]
- Liu, L.; Jensen, M.B. Green infrastructure for sustainable urban water management: Practices of five forerunner cities. Cities 2018, 74, 126–133. [Google Scholar] [CrossRef]
- Kazmierczak, A.; Carter, J. Adaptation to Climate Change Using Green and Blue Infrastructure. A Database of Case Studies; University of Manchester: Manchester, UK, 2010. [Google Scholar]
- Zhao, R.; Zhan, L.; Yao, M.; Yang, L. A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2.5. Sustain. Cities Soc. 2020, 56, 102106. [Google Scholar] [CrossRef]
- Wu, X.; Yin, J.; Li, C.; Xiang, H.; Lv, M.; Guo, Z. Natural and human environment interactively drive spread pattern of COVID-19: A city-level modeling study in China. Sci. Total Environ. 2021, 756, 143343. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Shan, W.; Jin, X.; Ren, J.; Wang, Y.; Xu, Z.; Fan, Y.; Gu, Z.; Hong, C.; Lin, J.; Zhou, Y. Ecological environment quality assessment based on remote sensing data for land consolidation. J. Clean. Prod. 2019, 239, 118126. [Google Scholar] [CrossRef]
- Gao, P.; Kasimu, A.; Zhao, Y.; Lin, B.; Chai, J.; Ruzi, T.; Zhao, H. Evaluation of the temporal and spatial changes of ecological quality in the Hami oasis based on RSEI. Sustainability 2020, 12, 7716. [Google Scholar] [CrossRef]
- Nie, X.; Hu, Z.; Zhu, Q.; Ruan, M. Research on temporal and spatial resolution and the driving forces of ecological environment quality in coal mining areas considering topographic correction. Remote Sens. 2021, 13, 2815. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, W. Monitoring and Evaluation of Eco-Environment Quality Based on Remote Sensing-Based Ecological Index (RSEI) in Taihu Lake Basin, China. Sustainability 2022, 14, 5642. [Google Scholar] [CrossRef]
Data Type | Data Format | Resolution | Source |
---|---|---|---|
2000–2020 remote sensing images | .tif | 30 m | (https://www.usgs.gov) (accessed on 17 August 2022) |
Center boundary, government points, park surface, water surface vector data | .shp | (http://zygh.fuzhou.gov.cn) (accessed on 17 August 2022) | |
DEM | .tif | 12.5 m | (https://asf.alaska.edu/) (accessed on 17 August 2022) |
Population density (2000~2020) | .tif | 100 m | (https://www.worldpop.org/) (accessed on 17 August 2022) |
GDP (2000~2020) | .tif | 1000 m | (https://www.resdc.cn/) (accessed on 17 August 2022) |
Average annual precipitation (2000~2020) | .tif | 1000 m | (http://www.geodata.cn/) (accessed on 17 August 2022) |
Indicator | Calculation Method | Explanation |
---|---|---|
NDVI | and for the near-infrared band and the red band, respectively [7,8,42]. | |
WET | , , , , , and correspond to the reflectance of TM and OLI remote sensing images in the blue, green, red, near-infrared, short-wave infrared 1, and short-wave infrared 2 bands, respectively [43,44]. | |
LST | and are the transmittance of the atmosphere in the thermal infrared band, the central wavelength () is , is 1.438 × 10−2 mK, is the surface emissivity of band 6, and and are the scaling coefficients obtained in the metadata of the image. is the transmittance of the atmosphere in the thermal infrared band; is the surface emissivity of band 10; is the thermal radiation brightness of a blackbody at the same temperature as ; and are the upward and downward radiance of the atmosphere, respectively; and and are the scaling coefficients obtained in the metadata of the image [45,46]. | |
NDBSI | IBI is the index-based build-up index, SI is the soil index, and the other bands are interpreted as above [19]. |
Year | Index | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|---|
2000 | NDVI | 0.5298 | 0.5334 | −0.4415 | 0.4897 |
WET | 0.4230 | −0.8151 | −0.0404 | 0.3937 | |
LST | −0.4464 | −0.2178 | −0.8658 | −0.0604 | |
NDBSI | −0.5840 | 0.0601 | 0.2320 | 0.7756 | |
Eigenvalue | 0.2150 | 0.0514 | 0.0448 | 0.0034 | |
Percent eigenvalue | 68.34% | 16.33% | 14.25% | 1.08% | |
2005 | NDVI | 0.5476 | 0.4815 | 0.3973 | 0.5571 |
WET | 0.3742 | −0.8343 | −0.0651 | 0.3997 | |
LST | −0.5030 | −0.2365 | 0.8238 | 0.1114 | |
NDBSI | −0.5541 | 0.1272 | −0.3991 | 0.7194 | |
Eigenvalue | 0.2717 | 0.0413 | 0.0114 | 0.0028 | |
Percent eigenvalue | 83.05% | 12.63% | 3.47% | 0.84% | |
2010 | NDVI | 0.5582 | 0.4782 | 0.3642 | 0.5719 |
WET | 0.3857 | −0.8545 | −0.0153 | 0.3477 | |
LST | −0.4965 | −0.1934 | 0.8387 | 0.1123 | |
NDBSI | −0.5414 | 0.0617 | −0.4046 | 0.7344 | |
Eigenvalue | 0.3022 | 0.0350 | 0.0116 | 0.0023 | |
Percent eigenvalue | 86.06% | 9.98% | 3.32% | 0.65% | |
2015 | NDVI | 0.5822 | 0.4325 | 0.4478 | 0.5230 |
WET | 0.3525 | −0.8013 | −0.1988 | 0.4405 | |
LST | −0.4830 | −0.3368 | 0.7971 | 0.1338 | |
NDBSI | −0.5509 | 0.2396 | −0.3530 | 0.7173 | |
Eigenvalue | 0.2455 | 0.0178 | 0.0067 | 0.0011 | |
Percent eigenvalue | 90.58% | 6.56% | 2.46% | 0.40% | |
2020 | NDVI | 0.5778 | 0.4157 | 0.4792 | 0.5136 |
WET | 0.3811 | −0.7904 | −0.2267 | 0.4226 | |
LST | −0.4609 | −0.3941 | 0.7886 | 0.1016 | |
NDBSI | −0.5555 | 0.2170 | −0.3115 | 0.7398 | |
Eigenvalue | 0.2506 | 0.0178 | 0.0079 | 0.0009 | |
Percent eigenvalue | 90.40% | 6.41% | 2.85% | 0.34% |
2000 | 2005 | 2010 | 2015 | 2020 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Scale | Moran’s I | z | p | Moran’s I | z | p | Moran’s I | z | p | Moran’s I | z | p | Moran’s I | z | p |
300 | 0.836 | 154.56 | 0.000 | 0.867 | 215.78 | 0.000 | 0.862 | 158.87 | 0.000 | 0.853 | 207.45 | 0.001 | 0.852 | 157.01 | 0.000 |
450 | 0.816 | 101.12 | 0.000 | 0.848 | 142.91 | 0.001 | 0.845 | 104.36 | 0.000 | 0.833 | 146.78 | 0.001 | 0.830 | 102.69 | 0.000 |
600 | 0.819 | 76.32 | 0.000 | 0.848 | 110.71 | 0.001 | 0.845 | 78.40 | 0.000 | 0.837 | 108.73 | 0.001 | 0.832 | 76.98 | 0.000 |
750 | 0.801 | 60.19 | 0.000 | 0.827 | 87.47 | 0.001 | 0.829 | 62.017 | 0.000 | 0.818 | 86.92 | 0.001 | 0.815 | 60.80 | 0.000 |
900 | 0.803 | 50.42 | 0.000 | 0.827 | 72.07 | 0.001 | 0.822 | 51.494 | 0.000 | 0.811 | 71.44 | 0.001 | 0.803 | 49.99 | 0.000 |
2000 | 2005 | 2010 | 2015 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
q | p | q | p | q | p | q | p | q | p | |
X1 | 0.48 | 0.000 | 0.58 | 0.000 | 0.62 | 0.000 | 0.63 | 0.000 | 0.63 | 0.000 |
X2 | 0.42 | 0.000 | 0.54 | 0.000 | 0.57 | 0.000 | 0.59 | 0.000 | 0.59 | 0.000 |
X3 | 0.30 | 0.000 | 0.46 | 0.000 | 0.43 | 0.000 | 0.41 | 0.000 | 0.42 | 0.000 |
X4 | 0.30 | 0.000 | 0.30 | 0.000 | 0.39 | 0.000 | 0.25 | 0.000 | 0.23 | 0.000 |
X5 | 0.28 | 0.000 | 0.30 | 0.000 | 0.28 | 0.000 | 0.37 | 0.000 | 0.31 | 0.000 |
X6 | 0.31 | 0.000 | 0.34 | 0.000 | 0.36 | 0.000 | 0.36 | 0.000 | 0.33 | 0.000 |
X7 | 0.16 | 0.000 | 0.22 | 0.000 | 0.24 | 0.000 | 0.22 | 0.000 | 0.21 | 0.000 |
X8 | 0.22 | 0.000 | 0.23 | 0.000 | 0.22 | 0.000 | 0.21 | 0.000 | 0.18 | 0.000 |
2000 | 2005 | 2010 | 2015 | 2020 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | Sig | VIF | Coefficient | Sig | VIF | Coefficient | Sig | VIF | Coefficient | Sig | VIF | Coefficient | Sig | VIF | |
X1 | 0.669 *** | 0.000 | 5.760 | 0.751 *** | 0.000 | 4.630 | 0.787 *** | 0.000 | 5.013 | 0.801 *** | 0.000 | 6.210 | 0.795 *** | 0.000 | 4.135 |
X2 | 0.629 *** | 0.000 | 1.766 | 0.727 *** | 0.000 | 1.839 | 0.740 *** | 0.000 | 1.787 | 0.750 *** | 0.000 | 1.780 | 0.746 *** | 0.000 | 1.779 |
X3 | −0.469 *** | 0.000 | 2.464 | −0.627 *** | 0.000 | 1.469 | −0.642 *** | 0.000 | 3.382 | −0.645 *** | 0.000 | 3.197 | −0.639 *** | 0.000 | 3.267 |
X4 | −0.330 *** | 0.000 | 2.119 | −0.334 *** | 0.000 | 2.484 | −0.393 *** | 0.000 | 2.806 | −0.291 *** | 0.000 | 2.022 | −0.256 *** | 0.000 | 1.890 |
X5 | 0.508 *** | 0.000 | 4.707 | 0.533 *** | 0.000 | 3.674 | 0.512 *** | 0.000 | 3.411 | 0.621 *** | 0.000 | 4.681 | 0.529 *** | 0.000 | 2.419 |
X6 | 0.529 *** | 0.000 | 2.746 | 0.562 *** | 0.000 | 2.718 | 0.582 *** | 0.000 | 2.717 | 0.607 *** | 0.000 | 2.722 | 0.594 *** | 0.000 | 2.683 |
X7 | 0.395 *** | 0.000 | 2.171 | 0.466 *** | 0.000 | 1.849 | 0.496 *** | 0.000 | 2.145 | 0.484 *** | 0.000 | 2.123 | 0.466 *** | 0.000 | 2.147 |
X8 | 0.374 *** | 0.000 | 2.965 | 0.411 *** | 0.000 | 3.380 | 0.426 *** | 0.000 | 3.158 | 0.433 *** | 0.000 | 3.181 | 0.413 *** | 0.000 | 2.750 |
Year | Residual Squares | Effective Number | AICc | R2 | R2 Adjusted |
---|---|---|---|---|---|
2000 | 74.36 | 99.52 | −5084.93 | 0.76 | 0.75 |
2005 | 56.78 | 76.41 | −6274.63 | 0.84 | 0.83 |
2010 | 58.80 | 86.81 | −6111.41 | 0.84 | 0.84 |
2015 | 52.85 | 85.32 | −6571.09 | 0.83 | 0.83 |
2020 | 48.87 | 86.01 | −6906.42 | 0.84 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, J.; Yu, K.; Xie, Z.; Zhao, G.; Ai, J.; Yang, L.; Yang, H.; Liu, J. Analysis of Spatiotemporal Variation and Drivers of Ecological Quality in Fuzhou Based on RSEI. Remote Sens. 2022, 14, 4900. https://doi.org/10.3390/rs14194900
Geng J, Yu K, Xie Z, Zhao G, Ai J, Yang L, Yang H, Liu J. Analysis of Spatiotemporal Variation and Drivers of Ecological Quality in Fuzhou Based on RSEI. Remote Sensing. 2022; 14(19):4900. https://doi.org/10.3390/rs14194900
Chicago/Turabian StyleGeng, Jianwei, Kunyong Yu, Zhen Xie, Gejin Zhao, Jingwen Ai, Liuqing Yang, Honghui Yang, and Jian Liu. 2022. "Analysis of Spatiotemporal Variation and Drivers of Ecological Quality in Fuzhou Based on RSEI" Remote Sensing 14, no. 19: 4900. https://doi.org/10.3390/rs14194900
APA StyleGeng, J., Yu, K., Xie, Z., Zhao, G., Ai, J., Yang, L., Yang, H., & Liu, J. (2022). Analysis of Spatiotemporal Variation and Drivers of Ecological Quality in Fuzhou Based on RSEI. Remote Sensing, 14(19), 4900. https://doi.org/10.3390/rs14194900