Vegetation Growth Status and Topographic Effects in Frozen Soil Regions on the Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. Fractional Vegetation Coverage
3.2. Sen Trend Analysis and Mann–Kendall Test
3.3. Coefficient of Variation
3.4. Correlation Analysis
4. Results and Analysis
4.1. Temporal and Spatial Variations of FVC
4.1.1. Temporal Variation of FVC
4.1.2. Spatial Variation of FVC
4.2. Effect of Topographic Variations
4.2.1. Effect of Elevation and Aspect
4.2.2. Effect of Slope and Aspect
5. Discussion
5.1. Natural Factors
5.2. Human Factors
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, H.; He, D.; Sui, X.; Chen, Y. Predicting Impacts of Future Climate Change and Hydropower Development towards Habitats of Native and Non-Native Fishes. Sci. Total Environ. 2020, 707, 135419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, S.; Yang, S. The Classification and Assessment of Freeze-Thaw Erosion in Tibet. J. Geogr. Sci. 2007, 17, 165–174. [Google Scholar] [CrossRef]
- Kuang, X.; Jiao, J.J. Review on Climate Change on the Tibetan Plateau during the Last Half Century. J. Geophys. Res. Atmos. 2016, 121, 3979–4007. [Google Scholar] [CrossRef]
- Lin, Z.; Guodong, C.; Yongjian, D. Studies on Frozen Ground of China. J. Geogr. Sci. 2004, 14, 411–416. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Bockheim, J.; Canadell, J.G.; Euskirchen, E.; Field, C.B.; Goryachkin, S.V.; Hagemann, S.; Kuhry, P.; Lafleur, P.M.; Lee, H.; et al. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. Bioscience 2008, 58, 701–714. [Google Scholar] [CrossRef]
- You, Q.; Xue, X.; Peng, F.; Dong, S.; Gao, Y. Surface Water and Heat Exchange Comparison between Alpine Meadow and Bare Land in a Permafrost Region of the Tibetan Plateau. Agric. Forest Meteorol. 2017, 232, 48–65. [Google Scholar] [CrossRef]
- Cheng, G.; Jin, H. Permafrost and Groundwater on the Qinghai-Tibet Plateau and in Northeast China. Hydrogeol. J. 2013, 21, 5–23. [Google Scholar] [CrossRef]
- Black, R.F. Features Indicative of Permafrost. Annu. Rev. Earth. Planet. Sci. 1976, 4, 75–94. [Google Scholar] [CrossRef]
- Tutubalina, O.V.; Rees, W.G. Vegetation Degradation in a Permafrost Region as Seen from Space: Noril’sk (1961–1999). Cold Reg. Sci. Technol. 2001, 32, 191–203. [Google Scholar] [CrossRef]
- Limpens, J.; Fijen, T.P.M.; Keizer, I.; Meijer, J.; Olsthoorn, F.; Pereira, A.; Postma, R.; Suyker, M.; Vasander, H.; Holmgren, M. Shrubs and Degraded Permafrost Pave the Way for Tree Establishment in Subarctic Peatlands. Ecosystems 2021, 24, 370–383. [Google Scholar] [CrossRef]
- Shur, Y.L.; Jorgenson, M.T. Patterns of Permafrost Formation and Degradation in Relation to Climate and Ecosystems. Permafrost. Periglac. 2007, 18, 7–19. [Google Scholar] [CrossRef]
- Jin, H.; He, R.; Cheng, G.; Wu, Q.; Wang, S.; Lü, L.; Chang, X. Changes in Frozen Ground in the Source Area of the Yellow River on the Qinghai–Tibet Plateau, China, and Their Eco-Environmental Impacts. Environ. Res. Lett. 2009, 4, 045206. [Google Scholar] [CrossRef]
- Qin, Y.; Lei, H.; Yang, D.; Gao, B.; Wang, Y.; Cong, Z.; Fan, W. Long-Term Change in the Depth of Seasonally Frozen Ground and Its Ecohydrological Impacts in the Qilian Mountains, Northeastern Tibetan Plateau. J. Hydrol. 2016, 542, 204–221. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Wang, X.; Lü, J.; Li, Z. Plant Species Distribution in Permafrost Wetlands of the Great Hing’an Mountain Valleys and Its Response to Global Climate Change. J. Earth Sci-China. 2010, 21, 266–270. [Google Scholar] [CrossRef]
- Lunardini, V.J. Climatic Warming and the Degradation of Warm Permafrost. Permafrost. Periglac. 1996, 7, 311–320. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, J.; Zhou, C.; Shi, P.; Zhao, L.; Shen, W.; Ouyang, H. Spatio-Temporal Changes of NDVI and Its Relation with Climatic Variables in the Source Regions of the Yangtze and Yellow Rivers. J. Geogr. Sci. 2011, 21, 979–993. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Gao, Y.; Zhu, D.; Yang, G.; Tian, J.; et al. The Impacts of Climate Change and Human Activities on Biogeochemical Cycles on the Qinghai-Tibetan Plateau. Glob. Chang. Biol. 2013, 19, 2940–2955. [Google Scholar] [CrossRef]
- Kreyling, J.; Beierkuhnlein, C.; Pritsch, K.; Schloter, M.; Jentsch, A. Recurrent Soil Freeze–Thaw Cycles Enhance Grassland Productivity. New Phytol. 2008, 177, 938–945. [Google Scholar] [CrossRef]
- Al-Bakri, J.T.; Taylor, J.C. Application of NOAA AVHRR for Monitoring Vegetation Conditions and Biomass in Jordan. J. Arid Environ. 2003, 54, 579–593. [Google Scholar] [CrossRef]
- Weiss, J.L.; Gutzler, D.S.; Coonrod, J.E.A.; Dahm, C.N. Long-Term Vegetation Monitoring with NDVI in a Diverse Semi-Arid Setting, Central New Mexico, USA. J. Arid Environ. 2004, 58, 249–272. [Google Scholar] [CrossRef]
- Chen, J.; Yan, F.; Lu, Q. Spatiotemporal Variation of Vegetation on the Qinghai-Tibet Plateau and the Influence of Climatic Factors and Human Activities on Vegetation Trend (2000–2019). Remote Sens. 2020, 12, 3150. [Google Scholar] [CrossRef]
- Dutta, D.; Das, P.K.; Paul, S.; Sharma, J.R.; Dadhwal, V.K. Assessment of Ecological Disturbance in the Mangrove Forest of Sundarbans Caused by Cyclones Using MODIS Time-Series Data (2001–2011). Nat. Hazards 2015, 79, 775–790. [Google Scholar] [CrossRef]
- Otto, M.; Höpfner, C.; Curio, J.; Maussion, F.; Scherer, D. Assessing Vegetation Response to Precipitation in Northwest Morocco during the Last Decade: An Application of MODIS NDVI and High Resolution Reanalysis Data. Theor. Appl. Climatol. 2016, 123, 23–41. [Google Scholar] [CrossRef]
- Huete, A. A Comparison of Vegetation Indices over a Global Set of TM Images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Bell, G.; Lechowicz, M.J.; Waterway, M.J. Environmental Heterogeneity and Species Diversity of Forest Sedges. J. Ecol. 2000, 88, 67–87. [Google Scholar] [CrossRef]
- Elmendorf, S.C.; Henry, G.H.R.; Hollister, R.D.; Björk, R.G.; Boulanger-Lapointe, N.; Cooper, E.J.; Cornelissen, J.H.C.; Day, T.A.; Dorrepaal, E.; Elumeeva, T.G.; et al. Plot-Scale Evidence of Tundra Vegetation Change and Links to Recent Summer Warming. Nat. Clim. Chang. 2012, 2, 453–457. [Google Scholar] [CrossRef]
- Eisenlohr, P.V.; Alves, L.F.; Bernacci, L.C.; Padgurschi, M.C.G.; Torres, R.B.; Prata, E.M.B.; dos Santos, F.A.M.; Assis, M.A.; Ramos, E.; Rochelle, A.L.C.; et al. Disturbances, Elevation, Topography and Spatial Proximity Drive Vegetation Patterns along an Altitudinal Gradient of a Top Biodiversity Hotspot. Biodivers. Conserv. 2013, 22, 2767–2783. [Google Scholar] [CrossRef]
- Wang, R.; Yan, F.; Wang, Y. Vegetation Growth Status and Topographic Effects in the Pisha Sandstone Area of China. Remote Sens. 2020, 12, 2759. [Google Scholar] [CrossRef]
- Yan, F.; Wu, B.; Wang, Y. Estimating Spatiotemporal Patterns of Aboveground Biomass Using Landsat TM and MODIS Images in the Mu Us Sandy Land, China. Agric. Forest Meteorol. 2015, 200, 119–128. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A New Map of Permafrost Distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef]
- Wang, Y.H.; Liu, H.Y.; Chung, H.; Yu, L.; Mi, Z.; Geng, Y.; Jing, X.; Wang, S.; Zeng, H.; Cao, G.; et al. Non-growing Season Soil Respiration Is Controlled by Freezing and Thawing Processes in the Summer Monsoon-dominated Tibetan Alpine Grassland. Glob. Biogeochem. Cycles 2014, 28, 1081–1095. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Busetto, L.; Meroni, M.; Colombo, R. Combining Medium and Coarse Spatial Resolution Satellite Data to Improve the Estimation of Sub-Pixel NDVI Time Series. Remote Sens. Environ. 2008, 112, 118–131. [Google Scholar] [CrossRef]
- Meusburger, K.; Bänninger, D.; Alewell, C. Estimating Vegetation Parameter for Soil Erosion Assessment in an Alpine Catchment by Means of QuickBird Imagery. Int. J. Appl. Earth Obs. 2010, 12, 201–207. [Google Scholar] [CrossRef]
- Leprieur, C.; Verstraete, M.M.; Pinty, B. Evaluation of the Performance of Various Vegetation Indices to Retrieve Vegetation Cover from AVHRR Data. Remote Sens. Rev. 1994, 10, 265–284. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The Derivation of the Green Vegetation Fraction from NOAA/AVHRR Data for Use in Numerical Weather Prediction Models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Rundquist, B.C. The Influence of Canopy Green Vegetation Fraction on Spectral Measurements over Native Tallgrass Prairie. Remote Sens. Environ. 2002, 81, 129–135. [Google Scholar] [CrossRef]
- Tucker, C.J.; Newcomb, W.W.; Los, S.O.; Prince, S.D. Mean and Inter-Year Variation of Growing-Season Normalized Difference Vegetation Index for the Sahel 1981–1989. Int. J. Remote Sens. 1991, 12, 1133–1135. [Google Scholar] [CrossRef]
- Cai, B.; Yu, R. Advance and Evaluation in the Long Time Series Vegetation Trends Research Based on Remote Sensing. J. Remote Sens. 2009, 12, 1170–1186. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1948. [Google Scholar]
- Zhu, G.; Liu, Y.; Ju, W.; Chen, J. Evaluation of Topographic Effects on Four Commonly Used Vegetation Indices. J. Remote Sens. 2013, 17, 210–234. [Google Scholar]
- Carmel, Y.; Kadmon, R. Effects of Grazing and Topography on Long-Term Vegetation Changes in a Mediterranean Ecosystem in Israel. Plant. Ecol. 1999, 145, 243–254. [Google Scholar] [CrossRef]
- Lu, X.; Kelsey, K.C.; Yan, Y.; Sun, J.; Wang, X.; Cheng, G.; Neff, J.C. Effects of Grazing on Ecosystem Structure and Function of Alpine Grasslands in Qinghai-Tibetan Plateau: A Synthesis. Ecosphere 2017, 8, e01656. [Google Scholar]
- Gao, Q.; Guo, Y.; Xu, H.; Ganjurjav, H.; Li, Y.; Wan, Y.; Qin, X.; Ma, X.; Liu, S. Climate Change and Its Impacts on Vegetation Distribution and Net Primary Productivity of the Alpine Ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 554–555, 34–41. [Google Scholar] [CrossRef]
- Ganjurjav, H.; Gao, Q.; Gornish, E.S.; Schwartz, M.W.; Liang, Y.; Cao, X.; Zhang, W.; Zhang, Y.; Li, W.; Wan, Y.; et al. Differential Response of Alpine Steppe and Alpine Meadow to Climate Warming in the Central Qinghai–Tibetan Plateau. Agric. Forest Meteorol. 2016, 223, 233–240. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.; Zhu, J.; Liu, Y.; Zu, J.; Zhang, J. The Influences of Climate Change and Human Activities on Vegetation Dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef]
- Klein, T.; Anderegg, W.R.L. A Vast Increase in Heat Exposure in the 21st Century Is Driven by Global Warming and Urban Population Growth. Sustain. Cities Soc. 2021, 73, 103098. [Google Scholar] [CrossRef]
- Eyring, V.; Gillett, N.P.; Rao, K.M.A.; Barimalala, R.; Parrillo, M.B.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; et al. Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 423–552. [Google Scholar]
- Cai, H.; Yang, X.; Xu, X. Human-Induced Grassland Degradation/Restoration in the Central Tibetan Plateau: The Effects of Ecological Protection and Restoration Projects. Ecol. Eng. 2015, 83, 112–119. [Google Scholar] [CrossRef]
Type | Aspect | ≤2000 m | 2000–3000 m | 3000–4000 m | 4000–5000 m | 5000–6000 m | >6000 m |
---|---|---|---|---|---|---|---|
FVCI * | Sunny slope | 0.908 | 0.594 | 0.651 | 0.434 | 0.227 | - |
Semi-sunny slope | 0.865 | 0.569 | 0.674 | 0.470 | 0.256 | - | |
Semi-shady slope | 0.819 | 0.511 | 0.665 | 0.487 | 0.285 | - | |
Shady slope | 0.718 | 0.427 | 0.631 | 0.457 | 0.305 | - | |
FVCII | Sunny slope | 0.835 | 0.735 | 0.458 | 0.294 | 0.134 | 0.033 |
Semi-sunny slope | 0.763 | 0.628 | 0.453 | 0.335 | 0.156 | 0.025 | |
Semi-shady slope | 0.772 | 0.784 | 0.484 | 0.371 | 0.180 | 0.050 | |
Shady slope | 0.846 | 0.750 | 0.368 | 0.369 | 0.185 | 0.040 | |
FVCIII | Sunny slope | 0.936 | 0.829 | 0.724 | 0.741 | - | - |
Semi-sunny slope | 0.933 | 0.815 | 0.741 | 0.585 | - | - | |
Semi-shady slope | 0.919 | 0.828 | 0.726 | - | - | - | |
Shady slope | 0.924 | 0.838 | 0.773 | 0.572 | - | - |
Type | ≤2000 m | 2000–3000 m | 3000–4000 m | 4000–5000 m | 5000–6000 m | >6000 m |
---|---|---|---|---|---|---|
CVI * | 23.40% | 32.55% | 3.05% | −4.99% | −29.32% | - |
CVII | −3.33% | −1.91% | 19.15% | −21.80% | −30.91% | −18.42% |
CVIII | 1.29% | −1.09% | −6.60% | 27.17% | - | - |
Type | Aspect | ≤2° | 2°–6° | 6°–15° | 15°–25° | >25° |
---|---|---|---|---|---|---|
FVCI * | Sunny slope | 0.334 | 0.426 | 0.518 | 0.588 | 0.639 |
Semi-sunny slope | 0.356 | 0.468 | 0.561 | 0.623 | 0.675 | |
Semi-shady slope | 0.351 | 0.470 | 0.562 | 0.639 | 0.702 | |
Shady slope | 0.320 | 0.414 | 0.525 | 0.629 | 0.704 | |
FVCII | Sunny slope | 0.205 | 0.251 | 0.250 | 0.219 | 0.212 |
Semi-sunny slope | 0.227 | 0.279 | 0.282 | 0.255 | 0.301 | |
Semi-shady slope | 0.235 | 0.301 | 0.329 | 0.314 | 0.374 | |
Shady slope | 0.223 | 0.288 | 0.347 | 0.358 | 0.387 | |
FVCIII | Sunny slope | 0.902 | 0.936 | 0.927 | 0.899 | 0.868 |
Semi-sunny slope | 0.914 | 0.913 | 0.897 | 0.885 | 0.845 | |
Semi-shady slope | 0.942 | 0.908 | 0.894 | 0.868 | 0.829 | |
Shady slope | 0.893 | 0.920 | 0.896 | 0.888 | 0.849 |
Type | ≤2° | 2°–6° | 6°–15° | 15°–25° | >25° |
---|---|---|---|---|---|
CVI * | 4.11% | 2.70% | −1.29% | −6.62% | −9.60% |
CVII | −8.04% | −13.17% | −31.49% | −46.64% | −52.08% |
CVIII | 0.99% | 1.74% | 3.43% | 1.24% | 2.23% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Wang, Y.; Yan, F. Vegetation Growth Status and Topographic Effects in Frozen Soil Regions on the Qinghai–Tibet Plateau. Remote Sens. 2022, 14, 4830. https://doi.org/10.3390/rs14194830
Wang R, Wang Y, Yan F. Vegetation Growth Status and Topographic Effects in Frozen Soil Regions on the Qinghai–Tibet Plateau. Remote Sensing. 2022; 14(19):4830. https://doi.org/10.3390/rs14194830
Chicago/Turabian StyleWang, Ruijie, Yanjiao Wang, and Feng Yan. 2022. "Vegetation Growth Status and Topographic Effects in Frozen Soil Regions on the Qinghai–Tibet Plateau" Remote Sensing 14, no. 19: 4830. https://doi.org/10.3390/rs14194830
APA StyleWang, R., Wang, Y., & Yan, F. (2022). Vegetation Growth Status and Topographic Effects in Frozen Soil Regions on the Qinghai–Tibet Plateau. Remote Sensing, 14(19), 4830. https://doi.org/10.3390/rs14194830