Sensitivity Analysis of 1,3-Butadiene Monitoring Based on Space-Based Detection in the Infrared Band
Abstract
:1. Introduction
2. Data and Methods
2.1. 1,3-Butadiene Infrared Spectral Radiance
2.2. Atmospheric Infrared Background Radiance
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beauregard, M.D. Locating and Estimating Air Emissions from Sources Of 1,3-Butadiene; United States Environmental Protection Agency: Washington, DC, USA, 1996.
- Gustafson, P.; Barregard, L.; Strandberg, B.; Sallsten, G. The impact of domestic wood burning on personal, indoor and outdoor levels of 1,3-butadiene, benzene, formaldehyde and acetaldehyde. J. Environ. Monit. 2007, 9, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Perbellini, L.; Princivalle, A.; Cerpelloni, M.; Pasini, F.; Brugnone, F. Comparison of breath, blood and urine concentrations in the biomonitoring of environmental exposure to 1,3-butadiene, 2,5-dimethylfuran, and benzene. Int. Arch. Occup. Environ. Health 2003, 76, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Sathiakumar, N.; Brill, I.; Leader, M.; Delzell, E. 1, 3-butadiene, styrene and lymphohematopoietic cancer among male synthetic rubber industry workers–preliminary exposure-response analyses. Chem.-Biol. Interact. 2015, 241, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Thepanondh, S.; Varoonphan, J.; Sarutichart, P.; Makkasap, T. Airborne Volatile Organic Compounds and Their Potential Health Impact on the Vicinity of Petrochemical Industrial Complex. Water Air Soil Pollut. 2010, 214, 83–92. [Google Scholar] [CrossRef]
- van Sittert, N.J.; Megens, H.J.; Watson, W.P.; Boogaard, P.J. Biomarkers of exposure to 1, 3-butadiene as a basis for cancer risk assessment. Toxicol. Sci. 2000, 56, 189–202. [Google Scholar] [CrossRef]
- Kramp, F.; Paulson, S.E. The gas phase reaction of ozone with 1, 3-butadiene: Formation yields of some toxic products. Atmos. Environ. 2000, 34, 35–43. [Google Scholar] [CrossRef]
- Wu, R.; Xie, S. Spatial Distribution of Ozone Formation in China Derived from Emissions of Speciated Volatile Organic Compounds. Environ. Sci. Technol. 2017, 51, 2574–2583. [Google Scholar] [CrossRef]
- Liao, J.; Wolfe, G.M.; Hannun, R.A.; St. Clair, J.M.; Hanisco, T.F.; Gilman, J.B.; Lamplugh, A.; Selimovic, V.; Diskin, G.S.; Nowak, J.B.; et al. Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ). Atmos. Chem. Phys. 2021, 21, 18319–18331. [Google Scholar] [CrossRef]
- Amini, H.; Yunesian, M.; Hosseini, V.; Schindler, C.; Henderson, S.B.; Künzli, N. A systematic review of land use regression models for volatile organic compounds. Atmos. Environ. 2017, 171, 1–16. [Google Scholar] [CrossRef]
- Smith, L.A.; Mukerjee, S.; Chung, K.C.; Afghani, J. Spatial analysis and land use regression of VOCs and NO2 in Dallas, Texas during two seasons. J. Environ. Monit. 2011, 13, 999–1007. [Google Scholar] [CrossRef]
- Dollard, G.; Dore, C.; Jenkin, M. Ambient concentrations of 1, 3-butadiene in the UK. Chem.-Biol. Interact. 2001, 135, 177–206. [Google Scholar] [CrossRef]
- Hystad, P.; Setton, E.; Cervantes, A.; Poplawski, K.; Deschenes, S.; Brauer, M.; van Donkelaar, A.; Lamsal, L.; Martin, R.; Jerrett, M.; et al. Creating national air pollution models for population exposure assessment in Canada. Environ. Health Perspect. 2011, 119, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.V.; Fiore, A.M.; Van Donkelaar, A. Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions. Geophys. Res. Lett. 2004, 31, 19416–19420. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, J.; Peters, S.; Li, J.; Oliver, S.; Mueller, N. Investigating the Impact of Using IR Bands on Early Fire Smoke Detection from Landsat Imagery with a Lightweight CNN Model. Remote Sens. 2022, 14, 3047. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Chakraborty, T.; Simensen, T.; Singh, G. Global 10m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover. Remote Sens. 2022, 14, 4101. [Google Scholar] [CrossRef]
- Wang, P.; Holloway, T.; Bindl, M.; Harkey, M.; De Smedt, I. Ambient Formaldehyde over the United States from Ground-Based (AQS) and Satellite (OMI) Observations. Remote Sens. 2022, 14, 2191. [Google Scholar] [CrossRef]
- Yu, J.; Meng, L.; Chen, Y.; Zhang, H.; Liu, J. Ozone Profiles, Precursors, and Vertical Distribution in Urban Lhasa, Tibetan Plateau. Remote Sens. 2022, 14, 2533. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Q.; Wang, H.; Bai, Z.; Li, D.; Wang, W.; Bian, J. Contributions of Various Sources to the Higher-Concentration Center of CO within the ASM Anticyclone Based on GEOS-Chem Simulations. Remote Sens. 2022, 14, 3322. [Google Scholar] [CrossRef]
- Craig, N.C.; Moore, M.C.; Patchen, A.K.; Sams, R.L. Analysis of rotational structure in the high-resolution infrared spectrum and assignment of vibrational fundamentals of butadiene-2,3-13C2. J. Mol. Spectrosc. 2006, 235, 181–189. [Google Scholar] [CrossRef]
- D’Arco, A.; Mancini, T.; Paolozzi, M.C.; Macis, S.; Mosesso, L.; Marcelli, A.; Petrarca, M.; Radica, F.; Tranfo, G.; Lupi, S.; et al. High Sensitivity Monitoring of VOCs in Air through FTIR Spectroscopy Using a Multipass Gas Cell Setup. Sensors 2022, 22, 5624. [Google Scholar] [CrossRef]
- Craig, N.C.; Hanson, K.A.; Moore, M.C.; Sams, R.L. Rotational analysis of several bands in the high-resolution infrared spectrum of butadiene-1-13C1: Assignment of vibrational fundamentals. J. Mol. Struct. 2005, 742, 21–29. [Google Scholar] [CrossRef]
- Craig, N.C.; Hanson, K.A.; Pierce, R.W.; Saylor, S.D.; Sams, R.L. Rotational analysis of bands in the high-resolution infrared spectra of the three species of butadiene-1,4-d2; refinement of the assignments of the vibrational fundamentals. J. Mol. Spectrosc. 2004, 228, 401–413. [Google Scholar] [CrossRef]
- Jin, T.; Zhou, J.; Lin, H.G.; Lin, P.T. Mid-Infrared Chalcogenide Waveguides for Real-Time and Nondestructive Volatile Organic Compound Detection. Anal. Chem. 2019, 91, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Siozos, P.; Psyllakis, G.; Samartzis, P.C.; Velegrakis, M. Autonomous Differential Absorption Laser Device for Remote Sensing of Atmospheric Greenhouse Gases. Remote Sens. 2022, 14, 460. [Google Scholar] [CrossRef]
- Prata, F. Detection and Avoidance of Atmospheric Aviation Hazards Using Infrared Spectroscopic Imaging. Remote Sens. 2020, 12, 2309. [Google Scholar] [CrossRef]
- Lu, X.; Huang, Y.; Wu, P.; Liu, D.; Ma, H.; Wang, G.; Cao, Z. Distributed Feedback Interband Cascade Laser Based Laser Heterodyne Radiometer for Column Density of HDO and CH4 Measurements at Dunhuang, Northwest of China. Remote Sens. 2022, 14, 1489. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, M.; Li, J.; Li, W.; Di, D.; Shi, Y.-N.; Wu, K. Alternate Mapping Correlated k-Distribution Method for Infrared Radiative Transfer Forward Simulation. Remote Sens. 2019, 11, 994. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949–108030. [Google Scholar] [CrossRef]
- Kochanov, R.V.; Gordon, I.E.; Rothman, L.S.; Shine, K.P.; Sharpe, S.W.; Johnson, T.J.; Wallington, T.J.; Harrison, J.J.; Bernath, P.F.; Birk, M.; et al. Infrared absorption cross-sections in HITRAN2016 and beyond: Expansion for climate, environment, and atmospheric applications. J. Quant. Spectrosc. Radiat. Transf. 2019, 230, 172–221. [Google Scholar] [CrossRef]
- Berk, A. Algorithm Theoretic Basis Document (ATBD) for Next Generation MODTRAN; Air Force Research Laboratory: Wright-Patterson Air Force Base, OH, USA, 2016. [Google Scholar]
- Mlynczak, M.G. Energetics of the mesosphere and lower thermosphere and the SABER experiment. Adv. Space Res. 1997, 20, 1177–1183. [Google Scholar] [CrossRef]
- Zhao, X.; Sheng, Z.; Shi, H.; Weng, L.; Liao, Q. Long-term trends and solar responses of the mesopause temperatures observed by SABER during the 2002–2019 period. J. Geophys. Res. Atmos. 2020, 125, 125–141. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Li, M.; Peng, Z.; Liu, X. Investigating Detectability of Infrared Radiation Based on Image Evaluation for Engine Flame. Entropy 2019, 21, 946. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Bai, L.; Li, J.; Wang, Y.; Xie, J.; Zhang, D.; Guo, L. Sensitivity Analysis of 1,3-Butadiene Monitoring Based on Space-Based Detection in the Infrared Band. Remote Sens. 2022, 14, 4788. https://doi.org/10.3390/rs14194788
Bai J, Bai L, Li J, Wang Y, Xie J, Zhang D, Guo L. Sensitivity Analysis of 1,3-Butadiene Monitoring Based on Space-Based Detection in the Infrared Band. Remote Sensing. 2022; 14(19):4788. https://doi.org/10.3390/rs14194788
Chicago/Turabian StyleBai, Jingyu, Lu Bai, Jinlu Li, Yankun Wang, Jinyu Xie, Danmeng Zhang, and Lixin Guo. 2022. "Sensitivity Analysis of 1,3-Butadiene Monitoring Based on Space-Based Detection in the Infrared Band" Remote Sensing 14, no. 19: 4788. https://doi.org/10.3390/rs14194788
APA StyleBai, J., Bai, L., Li, J., Wang, Y., Xie, J., Zhang, D., & Guo, L. (2022). Sensitivity Analysis of 1,3-Butadiene Monitoring Based on Space-Based Detection in the Infrared Band. Remote Sensing, 14(19), 4788. https://doi.org/10.3390/rs14194788