The Effects of Rainfall on Over-the-Horizon Propagation in the Evaporation Duct over the South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Reanalysis Data
2.2.2. Measurement Data
2.3. Methods
2.3.1. ED Prediction Models
2.3.2. The PE Model
2.3.3. RA Prediction Model of EM Waves
3. Results
3.1. Rainfall Characteristics
3.2. Atmospheric Parameters
3.3. EDH Analysis
3.4. PL Analysis
4. Discussion
5. Conclusions
- (1)
- Rainfall has negative effects on OTH propagation by increasing the RH and the rainfall attenuation. The moist air brought by rainfall reduces the EDH, which is not conducive to the OTH propagation of EM waves. The RA is an influencing factor that cannot be ignored and directly attenuates the signals.
- (2)
- A high EDH is usually accompanied by low RH and strong WS during rainfall. Under some special meteorological conditions, such as a sea–land breeze, when the WS increases accompanied by a decrease in RH, the EDH can be abnormally high during rainfall. The observational experiment in this paper found that the change in the direction of the sea–land breeze causes a 7.1 m increase of EDH by transferring the moist patches, resulting in a 42.4 dB decrease of PL.
- (3)
- The effect of the ED on OTH propagation reaches 0.69 dB km−1, which is 4.3 times stronger than the effect of RA (0.16 dB km−1), when the rainfall is less than 5 mm h−1. The propagation of EM waves over the sea is mainly affected by the ED. The marine systems should be suitable for the best ED when the rainfall is under 5 mm s−1 by using the optimal frequency.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babin, S.M. A New Model of the Oceanic Evaporation Duct and Its Comparison with Current Models. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 1996. [Google Scholar]
- Yang, K.; Zhang, Q.; Shi, Y.; He, Z.; Lei, B.; Han, Y. On Analyzing Space-Time Distribution of Evaporation Duct Height over the Global Ocean. Acta Oceanol. Sin. 2016, 35, 20–29. [Google Scholar] [CrossRef]
- Shi, Y.; Kun-De, Y.; Yang, Y.-X.; Ma, Y.-L. Influence of Obstacle on Electromagnetic Wave Propagation in Evaporation Duct with Experiment Verification. Chin. Phys. B 2015, 24, 054101. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, K.-D.; Yang, Y.-X.; Ma, Y.-L. Experimental Verification of Effect of Horizontal Inhomogeneity of Evaporation Duct on Electromagnetic Wave Propagation. Chin. Phys. B 2015, 24, 044102. [Google Scholar] [CrossRef]
- Babin, S.M.; Dockery, G.D. LKB-Based Evaporation Duct Model Comparison with Buoy Data. J. Appl. Meteorol. 2002, 41, 434–446. [Google Scholar] [CrossRef]
- Ding, J.; Fei, J.; Huang, X.; Cheng, X.; Hu, X.; Ji, L. Development and Validation of an Evaporation Duct Model. Part I: Model Establishment and Sensitivity Experiments. J. Meteorol. Res. 2015, 29, 467–481. [Google Scholar] [CrossRef]
- Ding, J.; Fei, J.; Huang, X.; Cheng, X.; Hu, X.; Ji, L. Development and Validation of an Evaporation Duct Model. Part II: Evaluation and Improvement of Stability Functions. J. Meteorol. Res. 2015, 29, 482–495. [Google Scholar] [CrossRef]
- Liu, W.T.; Blanc, T.V. The Liu, Katsaros, and Businger (1979) Bulk Atmospheric Flux Computational Iteration Program in FORTRAN and BASIC; Naval Research Laboratory: Washington, DC, USA, 1984. [Google Scholar]
- Babin, S.M.; Young, G.S.; Carton, J.A. A New Model of the Oceanic Evaporation Duct. J. Appl. Meteorol. 1997, 36, 193–204. [Google Scholar] [CrossRef]
- Frederickson, P.A. Further Improvements and Validation for the Navy Atmospheric Vertical Surface Layer Model (NAVSLaM). In Proceedings of the 2015 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Vancouver, BC, Canada, 19–24 July 2015; p. 242. [Google Scholar]
- Zhang, Q.; Yang, K.; Shi, Y. Spatial and Temporal Variability of the Evaporation Duct in the Gulf of Aden. Tellus Dyn. Meteorol. Oceanogr. 2016, 68, 29792. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, K.; Yang, Q. Statistical Analysis of the Quantified Relationship between Evaporation Duct and Oceanic Evaporation for Unstable Conditions. J. Atmos. Ocean. Technol. 2017, 34, 2489–2497. [Google Scholar] [CrossRef]
- Twigg, K.L.; Murphree, J.T.; Frederickson, P.A. A Smart Climatology of Evaporation Duct Height and Surface Radar Propagation in the Indian Ocean. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, 2007. [Google Scholar]
- McKeon, B.D. Climate Analysis of Evaporation Ducts in the South China Sea. Available online: http://hdl.handle.net/10945/38983 (accessed on 7 November 2021).
- Jia, W.; Zhang, W.; Zhu, J.; Sun, J. The Effect of Boreal Summer Intraseasonal Oscillation on Evaporation Duct and Electromagnetic Propagation over the South China Sea. Atmosphere 2020, 11, 1298. [Google Scholar] [CrossRef]
- Wang, S.; Yang, K.; Shi, Y.; Yang, F. Observations of Anomalous Over-the-Horizon Propagation in the Evaporation Duct Induced by Typhoon Kompasu (202118). IEEE Antennas Wirel. Propag. Lett. 2022, 21, 963–967. [Google Scholar] [CrossRef]
- Hong, F.; Zhang, Q. Time Series Analysis of Evaporation Duct Height over South China Sea: A Stochastic Modeling Approach. Atmosphere 2021, 12, 1663. [Google Scholar] [CrossRef]
- Frederickson, P.A.; Davidson, K.L.; Newton, A. An Operational Bulk Evaporation Duct Model (p. 1); Proc. Battlespace ACIMOC: Monterey, CA, USA, 2003. [Google Scholar]
- Grachev, A.A.; Andreas, E.L.; Fairall, C.W.; Guest, P.S.; Persson, P.O.G. SHEBA Flux–Profile Relationships in the Stable Atmospheric Boundary Layer. Bound.-Layer Meteorol. 2007, 124, 315–333. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Q.; Wang, S.; Yang, K.; Yang, Y.; Ma, Y. Impact of Typhoon on Evaporation Duct in the Northwest Pacific Ocean. IEEE Access 2019, 7, 109111–109119. [Google Scholar] [CrossRef]
- Choi, J. Performance Comparison of Tropospheric Propagation Models: Ray-Trace Analysis Results Using Worldwide Tropospheric Databases; DTIC Document; Environmental Science: Norwich, UK, 1997. [Google Scholar]
- Leontovich, M.; Fock, V. Solution of Propagation of Electromagnetic Waves along the Earth’s Surface by the Method of Parabolic Equations. J. Phys. Ussr 1946, 10, 13–23. [Google Scholar]
- Barrios, A.E.; Anderson, K.; Lindem, G. Low Altitude Propagation Effects—A Validation Study of the Advanced Propagation Model (APM) for Mobile Radio Applications. IEEE Trans. Antennas Propag. 2006, 54, 2869–2877. [Google Scholar] [CrossRef]
- Patterson, W.L. Advanced Refractive Effects Prediction System (AREPS). In Proceedings of the 2007 IEEE Radar Conference, Waltham, MA, USA, 17–20 April 2007; pp. 891–895. [Google Scholar]
- Barrios, A.E. A Terrain Parabolic Equation Model for Propagation in the Troposphere. IEEE Trans. Antennas Propag. 1994, 42, 90–98. [Google Scholar] [CrossRef]
- Guo, X.; Zhao, D.; Zhang, L.; Wang, H.; Kang, S. A Comparison Study of Sensitivity on PJ and NPS Models in China Seas. J. Ocean Univ. China 2019, 18, 1022–1030. [Google Scholar] [CrossRef]
- Ozgun, O.; Apaydin, G.; Kuzuoglu, M.; Sevgi, L. PETOOL: MATLAB-Based One-Way and Two-Way Split-Step Parabolic Equation Tool for Radiowave Propagation over Variable Terrain. Comput. Phys. Commun. 2011, 182, 2638–2654. [Google Scholar] [CrossRef]
- Ozgun, O.; Sahin, V.; Erguden, M.E.; Apaydin, G.; Yilmaz, A.E.; Kuzuoglu, M.; Sevgi, L. PETOOL v2.0: Parabolic Equation Toolbox with Evaporation Duct Models and Real Environment Data. Comput. Phys. Commun. 2020, 256, 107454. [Google Scholar] [CrossRef]
- Xiang, B.O.; Xinning, D.; Yonghua, L.I. Climate Change Trend and Causes of Tropical Cyclones Affecting the South China Sea during the Past 50 Years. Atmos. Ocean. Sci. Lett. 2020, 13, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Tan, Y. Experimental Investigation on the Influences of Rainfall Patterns on Instability of Sandy Slopes. Environ. Earth Sci. 2021, 80, 803. [Google Scholar] [CrossRef]
- Ding, Z.W.; Wei-Biao, L.I.; Wen, Z.P.; Luo, C. Temporal and Spatial Characteristics of Evaporation over the South China Sea from 1958 to 2006. J. Trop. Oceanogr. 2010, 29, 34–45. [Google Scholar]
- Ye, Q.; Li, J.; Luo, J.; Ding, C.; Zhao, Y. Comparison Study on Precipitation Cloud and Latent Heat Characteristics over the South China Sea and Its Surrounding Areas Based on TRMM. J. Trop. Meteorol. 2018, 34, 419–432. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Nie, Y. Analysis of the Characteristics of Rainfall at Sea Based on the Ship-Borne Automatic Weather Station. Adv. Mar. Sci. 2021, 08, 35–43. [Google Scholar] [CrossRef]
- Olsen, R.; Rogers, D.; Hodge, D. The ARB Relation in the Calculation of Rain Attenuation. IEEE Trans. Antennas Propag. 1978, 26, 318–329. [Google Scholar] [CrossRef]
- Abdulrahman, A.Y.; Abdul Rahman, T.; Abdulrahim, S.K.; Rafiqul Islam, M. Rain Attenuation Measurements over Terrestrial Microwave Links Operating at 15 GHz in Malaysia: Rain Attenuation Measurements. Int. J. Commun. Syst. 2012, 25, 1479–1488. [Google Scholar] [CrossRef]
- Abdulrahman, A.Y.; Rahman, T.A.; Rahim, S.K.A.; Islam, M.R.; Abdulrahman, M.K.A. Rain Attenuation Predictions on Terrestrial Radio Links: Differential Equations Approach. Eur. Trans. Telecommun. 2012, 23, 293–301. [Google Scholar] [CrossRef]
- Jang, K.J.; Yoon, Y.; Kim, J.; Kim, J.H.; Hwang, G. Rain Attenuation Prediction Model for Terrestrial Links Using Gaussian Process Regression. IEEE Commun. Lett. 2021, 25, 3719–3723. [Google Scholar] [CrossRef]
- Ulaganathen, K.; Rahman, T.A.; Rahim, S.K.A.; Islam, R.M. Review of Rain Attenuation Studies in Tropical and Equatorial Regions in Malaysia: An Overview. IEEE Antennas Propag. Mag. 2013, 55, 103–113. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chakraborty, M.; Das, S. Experimental Studies of Slant-Path Rain Attenuation Over Tropical and Equatorial Regions: A Brief Review. IEEE Antennas Propag. Mag. 2021, 63, 52–62. [Google Scholar] [CrossRef]
- Torri, G.; Kuang, Z. Rain Evaporation and Moist Patches in Tropical Boundary Layers. Geophys. Res. Lett. 2016, 43, 9895–9902. [Google Scholar] [CrossRef]
- Kurzyca, I.; Frankowski, M. Scavenging of Nitrogen From the Atmosphere by Atmospheric (Rain and Snow) and Occult (Dew and Frost) Precipitation: Comparison of Urban and Nonurban Deposition Profiles. J. Geophys. Res. Biogeosci. 2019, 124, 2288–2304. [Google Scholar] [CrossRef]
- Ma, W.; Yang, X.; Yu, Y.; Liu, G.; Li, Z.; Jing, C. Impact of Rain-Induced Sea Surface Roughness Variations on Salinity Retrieval from the Aquarius/SAC-D Satellite. Acta Oceanol. Sin. 2015, 34, 89–96. [Google Scholar] [CrossRef]
- Zhi, R.; Zhao, J.; Zhou, J.; Chen, L. Inter-decadal Variation of Autumn Rain of West China and Its Relationship with Atmospheric Circulation and Sea Surface Temperature Anomalies. Int. J. Climatol. 2020, 40, 5700–5713. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Z.; Wang, H. Inversion Method of Regional Range-Dependent Surface Ducts with a Base Layer by Doppler Weather Radar Echoes Based on WRF Model. Atmosphere 2020, 11, 754. [Google Scholar] [CrossRef]
- Dinc, E.; Akan, O.B. Beyond-Line-of-Sight Ducting Channels: Coherence Bandwidth, Coherence Time and Rain Attenuation. IEEE Commun. Lett. 2015, 19, 2274–2277. [Google Scholar] [CrossRef]
- An, J.; Qi, L. Analysis of Atmosphere Character in the Coastal Area of the South China Sea. Mar. Forecasts 2014, 31, 54–62. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Newton, D.A. COAMPS Modeled Surface Layer Refractivity in the Roughness and Evaporation Duct Experiment 2001; Naval Postgraduate School Monterey: Monterey, CA, USA, 2003. [Google Scholar]
- Meindl, E.A.; Hamilton, G.D. Programs of the National Data Buoy Center. Bull. Am. Meteorol. Soc. 1992, 73, 985–993. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Busalacchi, A.J.; Cheney, R.; Donguy, J.-R.; Gage, K.S.; Halpern, D.; Ji, M.; Julian, P.; Meyers, G.; Mitchum, G.T.; et al. The Tropical Ocean-Global Atmosphere Observing System: A Decade of Progress. J. Geophys. Res. Oceans 1998, 103, 14169–14240. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Pagiatakis, S.D. LSWAVE: A MATLAB Software for the Least-Squares Wavelet and Cross-Wavelet Analyses. GPS Solut. 2019, 23, 50. [Google Scholar] [CrossRef]
- Rodgers, J.L.; Nicewander, W.A. Thirteen Ways to Look at the Correlation Coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Wu, C.; He, X.; Zhong, Y. Application of the PJ and NPS Evaporation Duct Models over the South China Sea (SCS) in Winter. PLoS ONE 2017, 12, e0172284. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, Q.; Shi, Y. Interannual Variability of the Evaporation Duct over the South China Sea and Its Relations with Regional Evaporation: RELATE EVAPORATION DUCT TO EVAPORATION. J. Geophys. Res. Oceans 2017, 122, 6698–6713. [Google Scholar] [CrossRef]
- Paulus, R.A. Evaporation Duct Effects on Sea Clutter. IEEE Trans. Antennas Propag. 1990, 38, 1765–1771. [Google Scholar] [CrossRef]
- Hardin, R.H.; Tappert, F.D. Applications of the Split-Step Fourier Method to the Numerical Solution of Nonlinear and Variable Coefficient Wave Equations. Siam Rev. 1973, 15, 423. [Google Scholar]
- Dockery, G.D. Modeling Electromagnetic Wave Propagation in the Troposphere Using the Parabolic Equation. IEEE Trans. Antennas Propag. 1988, 36, 1464–1470. [Google Scholar] [CrossRef]
- Kuttler, J.R.; Janaswamy, R. Improved Fourier Transform Methods for Solving the Parabolic Wave Equation: IMPROVED FOURIER TRANSFORM METHODS. Radio Sci. 2002, 37, 1–11. [Google Scholar] [CrossRef]
- Janaswamy, R. Path Loss Predictions in the Presence of Buildings on Flat Terrain: A 3-D Vector Parabolic Equation Approach. IEEE Trans. Antennas Propag. 2003, 51, 1716–1728. [Google Scholar] [CrossRef]
- Akbarpour, R.; Webster, A.R. Ray-Tracing and Parabolic Equation Methods in the Modeling of a Tropospheric Microwave Link. IEEE Trans. Antennas Propag. 2005, 53, 3785–3791. [Google Scholar] [CrossRef]
- Isaakidis, S.A.; Xenos, T.D. Parabolic equation solution of tropospheric wave propagation using fem. Prog. Electromagn. Res. 2004, 49, 257–271. [Google Scholar] [CrossRef]
- Arshad, K.; Katsriku, F.; Lasebae, A. Radiowave VHF Propagation Modelling in Forest Using Finite Elements. In Proceedings of the 2006 2nd International Conference on Information & Communication Technologies, Damascus, Syria, 24–28 April 2006; Volume 2, pp. 2146–2149. [Google Scholar]
- Apaydin, G.; Sevgi, L. The Split-Step-Fourier and Finite-Element-Based Parabolic-Equation Propagation-Prediction Tools: Canonical Tests, Systematic Comparisons, and Calibration. IEEE Antennas Propag. Mag. 2010, 52, 66–79. [Google Scholar] [CrossRef]
- Kraut, S.; Anderson, R.H.; Krolik, J.L. A Generalized Karhunen–Loeve Basis for Efficient Estimation of Tropospheric RefractivityUsing Radar Clutter. IEEE Trans. Signal Process. 2004, 52, 48–60. [Google Scholar] [CrossRef]
- de Wolf, D.A. On the Laws-Parsons Distribution of Raindrop Sizes. Radio Sci. 2001, 36, 639–642. [Google Scholar] [CrossRef]
- RECOMMENDATION ITU-R P.838-3—Specific Attenuation Model for Rain for Use in Prediction Methods. 8. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.838-3-200503-I!!PDF-E.pdf (accessed on 20 November 2020).
- Zeng, Q.; Zhang, Y.; Lei, H.; Xie, Y.; Gao, T.; Zhang, L.; Wang, C.; Huang, Y. Microphysical Characteristics of Precipitation during Pre-Monsoon, Monsoon, and Post-Monsoon Periods over the South China Sea. Adv. Atmos. Sci. 2019, 36, 1103–1120. [Google Scholar] [CrossRef]
- Cheung, H.-F.; Pan, J.; Gu, Y.; Wang, Z. Remote-Sensing Observation of Ocean Responses to Typhoon Lupit in the Northwest Pacific. Int. J. Remote Sens. 2013, 34, 1478–1491. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Y.; Zhang, L.; Lei, H.; Wu, Z. Precipitation Microphysical Processes in the Inner Rainband of Tropical Cyclone Kajiki (2019) over the South China Sea Revealed by Polarimetric Radar. Adv. Atmos. Sci. 2021, 38, 65–80. [Google Scholar] [CrossRef]
- Wu, R.; Hu, W. Air–Sea Relationship Associated with Precipitation Anomaly Changes and Mean Precipitation Anomaly over the South China Sea and the Arabian Sea during the Spring to Summer Transition. J. Clim. 2015, 28, 7161–7181. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Burdanowitz, J.; Buehler, S.A.; Bakan, S.; Klepp, C. The Sensitivity of Oceanic Precipitation to Sea Surface Temperature. Atmos. Chem. Phys. 2019, 19, 9241–9252. [Google Scholar] [CrossRef]
- Zveryaev, I.I.; Hannachi, A.A. Interannual Variability of Mediterranean Evaporation and Its Relation to Regional Climate. Clim. Dyn. 2012, 38, 495–512. [Google Scholar] [CrossRef]
Data | Abbreviation | Source | Height | Unit |
---|---|---|---|---|
Air temperature | AT | ERA5 | 2 m | °C |
Sea surface temperature | SST | ERA5 | Sea surface | °C |
Wind speed | WS | ERA5 | 10 m | m/s |
Surface pressure | SP | ERA5 | Surface | hPa |
Rain Rate | RR | ERA5 | Surface | mm/h |
Relative humidity | RH | ERA5 | 2 m | % |
Evaporation duct height | EDH | NAVSLaM | / | m |
Mark | Data Source | Latitude | Longitude |
---|---|---|---|
A | Measurement | 21.01°N | 110.54°E |
B | Measurement | 21.39°N | 110.86°E |
C | ERA5 | 21.25°N | 110.75°E |
D | NMIC-CMA | 21.40°N | 110.82°E |
ASTD | Minimum EDH | Maximum EDH |
---|---|---|
−1 °C | 1.5 m | 14.4 m |
−2 °C | 2.5 m | 13.7 m |
−3 °C | 3.5 m | 13.3 m |
−4 °C | 4.5 m | 13.2 m |
Parameter | Value/Yype |
---|---|
Transmitting antenna height | 4 m |
Receiving antenna height | 4 m |
Antenna polarization | Horizon |
Antenna type | Horn antenna |
Elevation angle | 0° |
Propagation distance | 1–300 km |
Frequency | 9 GHz |
Parameter | Value/Type |
---|---|
Transmitter antenna type | Omni antenna |
Transmitter gain | 7 dB |
Transmitter height | 4 m |
Transmitter power | 40 dBm |
Polarization | Horizon |
Receiver antenna type | Horn antenna |
Receiver gain | 20 dB |
Receiver height | 4 m |
Parameter | Rainfall A | Rainfall B | Rainfall C |
---|---|---|---|
Total rainfall | 2.3 mm | 0.7 mm | 1.2 mm |
Average PL | 189 dB | 178 dB | 186 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Yang, K.; Shi, Y.; Wang, S.; Zhang, H.; Zhao, Y. The Effects of Rainfall on Over-the-Horizon Propagation in the Evaporation Duct over the South China Sea. Remote Sens. 2022, 14, 4787. https://doi.org/10.3390/rs14194787
Yang F, Yang K, Shi Y, Wang S, Zhang H, Zhao Y. The Effects of Rainfall on Over-the-Horizon Propagation in the Evaporation Duct over the South China Sea. Remote Sensing. 2022; 14(19):4787. https://doi.org/10.3390/rs14194787
Chicago/Turabian StyleYang, Fan, Kunde Yang, Yang Shi, Shuwen Wang, Hao Zhang, and Yaming Zhao. 2022. "The Effects of Rainfall on Over-the-Horizon Propagation in the Evaporation Duct over the South China Sea" Remote Sensing 14, no. 19: 4787. https://doi.org/10.3390/rs14194787
APA StyleYang, F., Yang, K., Shi, Y., Wang, S., Zhang, H., & Zhao, Y. (2022). The Effects of Rainfall on Over-the-Horizon Propagation in the Evaporation Duct over the South China Sea. Remote Sensing, 14(19), 4787. https://doi.org/10.3390/rs14194787