Object-Oriented Canopy Gap Extraction from UAV Images Based on Edge Enhancement
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data Source
2.3. Method
2.3.1. Image Edge Detection
2.3.2. Object-Oriented Classification
2.3.3. Canopy Gap Screening
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Watt, A.S. Pattern and process in the plant community. J. Ecol. 1947, 35, 1–22. [Google Scholar] [CrossRef]
- Kupfer, J.A.; Runkle, J.R. Early gap successional pathways in a Fagu“ Acer forest preserve: Pattern and determinants. J. Veg. Sci. 1996, 7, 247–256. [Google Scholar] [CrossRef]
- Suarez, A.V.; Pfennig, K.S.; Robinson, S.K. Nesting Success of a Disturbance Dependent Songbird on Different Kinds of Edges. Conserv. Biol. 1997, 11, 928–935. [Google Scholar] [CrossRef]
- Runkle, J.R. Gap regeneration in some old-growth forests of the Eastern United States. Ecology 1981, 62, 1041–1051. [Google Scholar] [CrossRef]
- Runkle, J.R. Patterns of disturbance in some old-growth mesic forests of Eastern North America. Ecology 1982, 63, 1533–1546. [Google Scholar] [CrossRef]
- Haber, L.T.; Fahey, R.T.; Wales, S.B.; Correa Pascuas, N.; Currie, W.S.; Hardiman, B.S.; Gough, C.M. Forest structure, diversity, and primary production in relation to disturbance severity. Ecol. Evol. 2020, 10, 4419–4430. [Google Scholar] [CrossRef]
- Orman, O.; Dobrowolska, D. Gap dynamics in the Western Carpathian mixed beech old-growth forests affected by spruce bark beetle outbreak. Eur. J. For. Res. 2017, 136, 571–581. [Google Scholar] [CrossRef]
- Liu, B.B.; Zhao, P.W.; Zhou, M.; Wang, Y.; Yang, L.; Shu, Y. Effects of forest gaps on the regeneration pattern of the undergrowth of secondary poplar-birch forests in southern greater Xingan Mountains. For. Resour. Manag. 2019, 8, 31–36+45. [Google Scholar] [CrossRef]
- Xu, B.Y. Tree gap and its impact on forest ecosystem. J. Hebei For. Sci. Technol. 2021, 1, 42–46. [Google Scholar] [CrossRef]
- Shen, H.; Cai, J.N.; Li, M.J.; Chen, Q.; Ye, W.H.; Wang, Z.F.; Lian, J.Y.; Song, L. On chinese forest canopy biodiversity monitoring. Biodivers. Sci. 2017, 25, 229–236. [Google Scholar] [CrossRef]
- Bonnet, S.; Gaulton, R.; Lehaire, F.; Lejeune, P. Canopy Gap Mapping from Airborne Laser Scanning: An Assessment of the Positional and Geometrical Accuracy. Remote Sens. 2015, 7, 11267–11294. [Google Scholar] [CrossRef]
- He, X.Y.; Ren, C.Y.; Chen, L.; Wang, C.M.; Zheng, H.F. The Progress of Forest Ecosystems Monitoring with Remote Sensing Techniques. Sci. Geogr. Sin. 2018, 38, 997–1011. [Google Scholar] [CrossRef]
- Yang, L.; Sun, Z.Y.; Tang, G.L.; Lin, Z.W.; Chen, Y.Q.; Li, Y.; Li, Y. Identifying canopy species of subtropical forest by lightweight unmanned aerial vehicle remote sensing. Trop. Geogr. 2016, 36, 833–839. [Google Scholar] [CrossRef]
- Xie, Q.Y.; Yu, K.Y.; Deng, Y.B.; Liu, J.; Fan, H.D.; Lin, T.Z. Height measurement of Cunninghamia lanceolata plantations based on UAV remote sensing. J. Zhejiang A F Univ. 2019, 36, 335–342. [Google Scholar]
- Bagaram, M.B.; Giuliarelli, D.; Chirici, G.; Giannetti, F.; Barbati, A. UAV Remote Sensing for Biodiversity Monitoring: Are Forest Canopy Gaps Good Covariates? Remote Sens. 2018, 10, 1397. [Google Scholar] [CrossRef]
- Wang, Y.; Lian, J.Y.; Zhang, Z.C.; Hu, J.B.; Yang, J.; Li, Y.; Ye, W.H. Forest plots gap and canopy structure analysis based on two UAV images. Trop. Geogr. 2019, 39, 553–561. [Google Scholar] [CrossRef]
- Chenari, A.; Erfanifard, Y.; Dehghani, M.; Pourghasemi, H.R. Woodland mapping at single-tree levels using object-oriented classification of unmanned aerial vehicle (UAV) images. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-4/W4, 43–49. [Google Scholar] [CrossRef]
- Franklin, S.E.; Ahmed, O.S. Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data. Int. J. Remote Sens. 2018, 39, 5236–5245. [Google Scholar] [CrossRef]
- Almquist, B.E.; Jack, S.B.; Messina, M.G. Variation of the treefall gap regime in a bottomland hardwood forest: Relationships with microtopography. For. Ecol. Manag. 2002, 157, 155–163. [Google Scholar] [CrossRef]
- Pilas, I.; Gaaparovj, M.; Novkinic, A.; Klobucar, D. Mapping of the canopy openings in mixed beech-fir forest at Sentinel-2 subpixel level using UAV and machine learning approach. Remote Sens. 2020, 12, 3925. [Google Scholar] [CrossRef]
- Johansen, K.; Arroyo, L.; Phinn, S.R.; Witte, C. Comparison of geo-object based and pixel-based change detection of riparian environments using high spatial resolution multi-spectral imagery. Photogramm. Eng. Remote Sens. 2010, 76, 123–136. [Google Scholar] [CrossRef]
- Bhaskaran, S.; Paramananda, S.; Ramnarayan, M. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Appl. Geogr. 2010, 30, 650–665. [Google Scholar] [CrossRef]
- Wu, F.M.; Zhang, M.; Wu, B.F. Object-oriented rapid estimation of rice acreage from UAV imagery. J. Geo-Inf. Sci. 2019, 21, 789–798. [Google Scholar]
- Drössler, L.; Lüpke, B.v. Canopy gaps in two virgin beech forest reserves in Slovakia. J. For. Sci. 2018, 51, 446–457. [Google Scholar] [CrossRef]
- Forbes, A.; Norton, D.A.; Carswell, F.E. Artificial canopy gaps accelerate restoration within an exotic Pinus radiata plantation. Restor. Ecol. 2016, 24, 336–345. [Google Scholar] [CrossRef]
- Liu, F.; Yang, Z.; Zhang, G. Canopy gap characteristics and spatial patterns in a subtropical forest of South China after ice storm damage. J. Mt. Sci. 2020, 17, 1942–1958. [Google Scholar] [CrossRef]
- Vilhar, U.; Roženbergar, D.; Simončič, P.; Diaci, J. Variation in irradiance, soil features and regeneration patterns in experimental forest canopy gaps. Ann. For. Sci. 2014, 72, 253–266. [Google Scholar] [CrossRef]
- Chandrakar, N.; Bhonsle, D. Study and comparison of various image edge detection techniques. Int. J. Manag. IT Eng. 2012, 2, 499–509. [Google Scholar]
- Melin, P.; González, C.I.; Castro, J.R.; Mendoza, O.; Castillo, O. Edge-Detection Method for Image Processing Based on Generalized Type-2 Fuzzy Logic. IEEE Trans. Fuzzy Syst. 2014, 22, 1515–1525. [Google Scholar] [CrossRef]
- Versaci, M.; Morabito, F.C. Image Edge Detection: A New Approach Based on Fuzzy Entropy and Fuzzy Divergence. Int. J. Fuzzy Syst. 2021, 23, 918–936. [Google Scholar] [CrossRef]
- Qin, L.M. Research on object oriented high resolution image information extraction based on edge information enhancement. Master’s Thesis, Anhui University of Science and Technology, Anhui, China, 2016. [Google Scholar]
- Dharampal; Mutneja, V. Methods of Image Edge Detection: A Review. J. Electr. Electron. Syst. 2015, 4, 5. [Google Scholar]
- Hagara, M.; Kubinec, P. About Edge Detection in Digital Images. Radioengineering 2018, 27, 919–929. [Google Scholar] [CrossRef]
- Wanto, A.; Rizki, S.D.; Andini, S.; Surmayanti, S.; Ginantra, N.L.W.S.R.; Aspan, H. Combination of Sobel+Prewitt Edge Detection Method with Roberts+Canny on Passion Flower Image Identification. J. Phys. Conf. Ser. 2021, 1933, 12–13. [Google Scholar] [CrossRef]
- Qi, Y.L.; Wang, D.J. Comparison of image edge detection methods. China Stand. 2022, 141–144. [Google Scholar]
- Wang, Y.; Hu, Y.Q. Comparison and analysis of five algorithms for edge detection. Technol. Innov. Appl. 2015, 64. [Google Scholar]
- Chen, Y.Y. Comparison analysis of edge detection algorithm. Agric. Netw. Inf. 2012, 31–33. [Google Scholar]
- Russ, J.C. The Image Processing Handbook; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Ziou, D.; Tabbone, S. Edge Detection Techniques—An Overview. Pattern Recognit. Image Anal. C/C Raspoznavaniye Obraz. I Anal. Izobr. 1998, 8, 537–559. [Google Scholar]
- Lu, N. Dominant Tree Species Classification Using GF-2 Images Based on Seasonal Characteristics. Master’s Thesis, Beijing Forestry University, Beijing, China, 2019. [Google Scholar]
- Jia, Y.H.; Yang, L.M. Object-Oriented method of shrub swamp’s boundary extraction. J. Geomat. 2019, 44, 51–55. [Google Scholar] [CrossRef]
- Betts, H.D.; Brown, L.M.J.; Stewart, G.H. Forest canopy gap detection and characterisation by the use of high-resolution Digital Elevation Models. N. Z. J. Ecol. 2005, 29, 95–103. [Google Scholar]
- Yang, J.; Jones, T.A.; Caspersen, J.P.; He, Y. Object-Based Canopy Gap Segmentation and Classification: Quantifying the Pros and Cons of Integrating Optical and LiDAR Data. Remote Sens. 2015, 7, 15917–15932. [Google Scholar] [CrossRef]
- Lisein, J.; Pierrot-Deseilligny, M.; Bonnet, S.; Lejeune, P. A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery. Forests 2013, 4, 922–944. [Google Scholar] [CrossRef]
- Li, Q. Correlation between Spatial Distribution Forest Canopy Gap and Plant Diversity Indices in Xishuangbanna Tropical Forest. Master’s Thesis, Yunnan University, Kunming, China, 2019. [Google Scholar]
- Hong, L.; Chu, S.S.; Peng, S.Y.; Xu, Q.L. Multiscale segmentation-optimized algorithm for high-spatial remote sensing imagery considering global and local optimizations. Natl. Remote Sens. Bull. 2020, 24, 1464–1475. [Google Scholar]
- Zhang, Y.J. A survey on evaluation methods for image segmentation. Pattern Recognit. 1996, 29, 1335–1346. [Google Scholar] [CrossRef]
- Dra˘gut¸, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Dian, Y.; Li, Z.-y.; Pang, Y. Spectral and Texture Features Combined for Forest Tree species Classification with Airborne Hyperspectral Imagery. J. Indian Soc. Remote Sens. 2014, 43, 101–107. [Google Scholar] [CrossRef]
- Su, W.; Li, J.; Chen, Y.; Liu, Z.; Zhang, J.; Low, T.M.; Suppiah, I.; Hashim, S.A.M. Textural and local spatial statistics for the objec” oriented classification of urban areas using high resolution imagery. Int. J. Remote Sens. 2008, 29, 3105–3117. [Google Scholar] [CrossRef]
- Han, N.; Du, H.; Zhou, G.; Xu, X.; Ge, H.; Liu, L.; Gao, G.-l.; Sun, S.-b. Exploring the synergistic use of multi-scale image object metrics for land-use/land-cover mapping using an object-based approach. Int. J. Remote Sens. 2015, 36, 3544–3562. [Google Scholar] [CrossRef]
- Ling, C.X.; Liu, H.; Ji, P.; Hu, H.; Wang, X.H.; Hou, R.X. Estimation of vegetation coverage based on VDVI index of UAV visible image. For. Eng. 2021, 37, 57–66. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wang, M.M.; Wang, S.Q.; Wu, D.Y. Extraction of vegetation information from visible unmanned aerial vehicle images. Trans. Chin. Soc. Agric. Eng. 2015, 31, 152–159. [Google Scholar]
- Zhan, G.Q.; Yang, G.D.; Wang, F.Y.; Xin, X.W.; Guo, C.; Zhao, Q. The random forest classification of wetland from GF-2 imagery based on the optimized feature space. J. Geo-Inf. Sci. 2018, 20, 1520–1528. [Google Scholar]
- Rigatti, S.J. Random Forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2004, 45, 5–32. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, J.; Guo, S.; Ye, Z.; Deng, H.; Hou, X.; Zhang, H. Urban Tree Classification Based on Object-Oriented Approach and Random Forest Algorithm Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery. Remote Sens. 2022, 14, 3885. [Google Scholar] [CrossRef]
- Zhou, R.; Yang, C.; Li, E.; Cai, X.; Yang, J.; Xia, Y. Object-Based Wetland Vegetation Classification Using Multi-Feature Selection of Unoccupied Aerial Vehicle RGB Imagery. Remote Sens. 2021, 13, 4910. [Google Scholar] [CrossRef]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Delany, S.J. k-Nearest Neighbour Classifiers. ACM Comput. Surv. (CSUR) 2007, 54, 1–25. [Google Scholar]
- Mao, X.G.; Xing, X.L.; Li, J.R.; Tan, L.Q.; Fan, W.Y. Object-Oriented recognition of forest gap based on aerial orthophoto. Sci. Silvae Sin. 2019, 55, 87–96. [Google Scholar]
- Oreti, L.; Giuliarelli, D.; Tomao, A.; Barbati, A. Object Oriented Classification for Mapping Mixed and Pure Forest Stands Using Very-High Resolution Imagery. Remote Sens. 2021, 13, 2508. [Google Scholar] [CrossRef]
- Ulloa-Torrealba, Y.; Stahlmann, R.; Wegmann, M.; Koellner, T. Over 150 Years of Change: Object-Oriented Analysis of Historical Land Cover in the Main River Catchment, Bavaria/Germany. Remote Sens. 2020, 12, 4048. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Tian, J.; Shi, C. Object-based spectral-phenological features for mapping invasive Spartina alterniflora. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102349. [Google Scholar] [CrossRef]
Shape Factor | Compactness Factor | |
---|---|---|
The 1st group | 0.1 | 0.5 |
The 2nd group | 0.3 | 0.5 |
The 3rd group | 0.5 | 0.5 |
The 4th group | 0.7 | 0.5 |
The 5th group | 0.9 | 0.5 |
The 6th group | 0.3 | 0.1 |
The 7th group | 0.3 | 0.3 |
The 8th group | 0.3 | 0.7 |
The 9th group | 0.3 | 0.9 |
Categories | Band | Object Features | Numbers of Features |
---|---|---|---|
Spectral features | Red | The average value of each band The standard deviation of the green band | 4 |
Green | |||
Blue | |||
Texture features | Red | GLCM entropy of green and blue bands GLCM homogeneity of the red band | 3 |
Green | |||
Blue | |||
Index features | VDVI | 1 |
Classification Method | KNN | SVM | RF | |||
---|---|---|---|---|---|---|
PA/(%) | UA/(%) | PA/(%) | UA/(%) | PA/(%) | UA/(%) | |
Gap | 93.93 | 100 | 98.76 | 98.88 | 98.10 | 100 |
Canopy | 73.91 | 100 | 98.52 | 99.56 | 100 | 99.34 |
Other | 100 | 82.60 | 100 | 100 | 100 | 100 |
OA/(%) | 91.49 | 98.58 | 99.50 | |||
Kappa coefficient | 0.8675 | 0.9637 | 0.9872 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, J.; Wang, Y.; Dong, P.; He, S.; Zhao, F.; Luan, G. Object-Oriented Canopy Gap Extraction from UAV Images Based on Edge Enhancement. Remote Sens. 2022, 14, 4762. https://doi.org/10.3390/rs14194762
Xia J, Wang Y, Dong P, He S, Zhao F, Luan G. Object-Oriented Canopy Gap Extraction from UAV Images Based on Edge Enhancement. Remote Sensing. 2022; 14(19):4762. https://doi.org/10.3390/rs14194762
Chicago/Turabian StyleXia, Jisheng, Yutong Wang, Pinliang Dong, Shijun He, Fei Zhao, and Guize Luan. 2022. "Object-Oriented Canopy Gap Extraction from UAV Images Based on Edge Enhancement" Remote Sensing 14, no. 19: 4762. https://doi.org/10.3390/rs14194762
APA StyleXia, J., Wang, Y., Dong, P., He, S., Zhao, F., & Luan, G. (2022). Object-Oriented Canopy Gap Extraction from UAV Images Based on Edge Enhancement. Remote Sensing, 14(19), 4762. https://doi.org/10.3390/rs14194762