Object-Oriented Canopy Gap Extraction from UAV Images Based on Edge Enhancement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data Source
2.3. Method
2.3.1. Image Edge Detection
2.3.2. Object-Oriented Classification
2.3.3. Canopy Gap Screening
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Watt, A.S. Pattern and process in the plant community. J. Ecol. 1947, 35, 1–22. [Google Scholar] [CrossRef]
- Kupfer, J.A.; Runkle, J.R. Early gap successional pathways in a Fagu“ Acer forest preserve: Pattern and determinants. J. Veg. Sci. 1996, 7, 247–256. [Google Scholar] [CrossRef]
- Suarez, A.V.; Pfennig, K.S.; Robinson, S.K. Nesting Success of a Disturbance Dependent Songbird on Different Kinds of Edges. Conserv. Biol. 1997, 11, 928–935. [Google Scholar] [CrossRef]
- Runkle, J.R. Gap regeneration in some old-growth forests of the Eastern United States. Ecology 1981, 62, 1041–1051. [Google Scholar] [CrossRef]
- Runkle, J.R. Patterns of disturbance in some old-growth mesic forests of Eastern North America. Ecology 1982, 63, 1533–1546. [Google Scholar] [CrossRef]
- Haber, L.T.; Fahey, R.T.; Wales, S.B.; Correa Pascuas, N.; Currie, W.S.; Hardiman, B.S.; Gough, C.M. Forest structure, diversity, and primary production in relation to disturbance severity. Ecol. Evol. 2020, 10, 4419–4430. [Google Scholar] [CrossRef]
- Orman, O.; Dobrowolska, D. Gap dynamics in the Western Carpathian mixed beech old-growth forests affected by spruce bark beetle outbreak. Eur. J. For. Res. 2017, 136, 571–581. [Google Scholar] [CrossRef]
- Liu, B.B.; Zhao, P.W.; Zhou, M.; Wang, Y.; Yang, L.; Shu, Y. Effects of forest gaps on the regeneration pattern of the undergrowth of secondary poplar-birch forests in southern greater Xingan Mountains. For. Resour. Manag. 2019, 8, 31–36+45. [Google Scholar] [CrossRef]
- Xu, B.Y. Tree gap and its impact on forest ecosystem. J. Hebei For. Sci. Technol. 2021, 1, 42–46. [Google Scholar] [CrossRef]
- Shen, H.; Cai, J.N.; Li, M.J.; Chen, Q.; Ye, W.H.; Wang, Z.F.; Lian, J.Y.; Song, L. On chinese forest canopy biodiversity monitoring. Biodivers. Sci. 2017, 25, 229–236. [Google Scholar] [CrossRef]
- Bonnet, S.; Gaulton, R.; Lehaire, F.; Lejeune, P. Canopy Gap Mapping from Airborne Laser Scanning: An Assessment of the Positional and Geometrical Accuracy. Remote Sens. 2015, 7, 11267–11294. [Google Scholar] [CrossRef]
- He, X.Y.; Ren, C.Y.; Chen, L.; Wang, C.M.; Zheng, H.F. The Progress of Forest Ecosystems Monitoring with Remote Sensing Techniques. Sci. Geogr. Sin. 2018, 38, 997–1011. [Google Scholar] [CrossRef]
- Yang, L.; Sun, Z.Y.; Tang, G.L.; Lin, Z.W.; Chen, Y.Q.; Li, Y.; Li, Y. Identifying canopy species of subtropical forest by lightweight unmanned aerial vehicle remote sensing. Trop. Geogr. 2016, 36, 833–839. [Google Scholar] [CrossRef]
- Xie, Q.Y.; Yu, K.Y.; Deng, Y.B.; Liu, J.; Fan, H.D.; Lin, T.Z. Height measurement of Cunninghamia lanceolata plantations based on UAV remote sensing. J. Zhejiang A F Univ. 2019, 36, 335–342. [Google Scholar]
- Bagaram, M.B.; Giuliarelli, D.; Chirici, G.; Giannetti, F.; Barbati, A. UAV Remote Sensing for Biodiversity Monitoring: Are Forest Canopy Gaps Good Covariates? Remote Sens. 2018, 10, 1397. [Google Scholar] [CrossRef]
- Wang, Y.; Lian, J.Y.; Zhang, Z.C.; Hu, J.B.; Yang, J.; Li, Y.; Ye, W.H. Forest plots gap and canopy structure analysis based on two UAV images. Trop. Geogr. 2019, 39, 553–561. [Google Scholar] [CrossRef]
- Chenari, A.; Erfanifard, Y.; Dehghani, M.; Pourghasemi, H.R. Woodland mapping at single-tree levels using object-oriented classification of unmanned aerial vehicle (UAV) images. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-4/W4, 43–49. [Google Scholar] [CrossRef]
- Franklin, S.E.; Ahmed, O.S. Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data. Int. J. Remote Sens. 2018, 39, 5236–5245. [Google Scholar] [CrossRef]
- Almquist, B.E.; Jack, S.B.; Messina, M.G. Variation of the treefall gap regime in a bottomland hardwood forest: Relationships with microtopography. For. Ecol. Manag. 2002, 157, 155–163. [Google Scholar] [CrossRef]
- Pilas, I.; Gaaparovj, M.; Novkinic, A.; Klobucar, D. Mapping of the canopy openings in mixed beech-fir forest at Sentinel-2 subpixel level using UAV and machine learning approach. Remote Sens. 2020, 12, 3925. [Google Scholar] [CrossRef]
- Johansen, K.; Arroyo, L.; Phinn, S.R.; Witte, C. Comparison of geo-object based and pixel-based change detection of riparian environments using high spatial resolution multi-spectral imagery. Photogramm. Eng. Remote Sens. 2010, 76, 123–136. [Google Scholar] [CrossRef]
- Bhaskaran, S.; Paramananda, S.; Ramnarayan, M. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Appl. Geogr. 2010, 30, 650–665. [Google Scholar] [CrossRef]
- Wu, F.M.; Zhang, M.; Wu, B.F. Object-oriented rapid estimation of rice acreage from UAV imagery. J. Geo-Inf. Sci. 2019, 21, 789–798. [Google Scholar]
- Drössler, L.; Lüpke, B.v. Canopy gaps in two virgin beech forest reserves in Slovakia. J. For. Sci. 2018, 51, 446–457. [Google Scholar] [CrossRef]
- Forbes, A.; Norton, D.A.; Carswell, F.E. Artificial canopy gaps accelerate restoration within an exotic Pinus radiata plantation. Restor. Ecol. 2016, 24, 336–345. [Google Scholar] [CrossRef]
- Liu, F.; Yang, Z.; Zhang, G. Canopy gap characteristics and spatial patterns in a subtropical forest of South China after ice storm damage. J. Mt. Sci. 2020, 17, 1942–1958. [Google Scholar] [CrossRef]
- Vilhar, U.; Roženbergar, D.; Simončič, P.; Diaci, J. Variation in irradiance, soil features and regeneration patterns in experimental forest canopy gaps. Ann. For. Sci. 2014, 72, 253–266. [Google Scholar] [CrossRef]
- Chandrakar, N.; Bhonsle, D. Study and comparison of various image edge detection techniques. Int. J. Manag. IT Eng. 2012, 2, 499–509. [Google Scholar]
- Melin, P.; González, C.I.; Castro, J.R.; Mendoza, O.; Castillo, O. Edge-Detection Method for Image Processing Based on Generalized Type-2 Fuzzy Logic. IEEE Trans. Fuzzy Syst. 2014, 22, 1515–1525. [Google Scholar] [CrossRef]
- Versaci, M.; Morabito, F.C. Image Edge Detection: A New Approach Based on Fuzzy Entropy and Fuzzy Divergence. Int. J. Fuzzy Syst. 2021, 23, 918–936. [Google Scholar] [CrossRef]
- Qin, L.M. Research on object oriented high resolution image information extraction based on edge information enhancement. Master’s Thesis, Anhui University of Science and Technology, Anhui, China, 2016. [Google Scholar]
- Dharampal; Mutneja, V. Methods of Image Edge Detection: A Review. J. Electr. Electron. Syst. 2015, 4, 5. [Google Scholar]
- Hagara, M.; Kubinec, P. About Edge Detection in Digital Images. Radioengineering 2018, 27, 919–929. [Google Scholar] [CrossRef]
- Wanto, A.; Rizki, S.D.; Andini, S.; Surmayanti, S.; Ginantra, N.L.W.S.R.; Aspan, H. Combination of Sobel+Prewitt Edge Detection Method with Roberts+Canny on Passion Flower Image Identification. J. Phys. Conf. Ser. 2021, 1933, 12–13. [Google Scholar] [CrossRef]
- Qi, Y.L.; Wang, D.J. Comparison of image edge detection methods. China Stand. 2022, 141–144. [Google Scholar]
- Wang, Y.; Hu, Y.Q. Comparison and analysis of five algorithms for edge detection. Technol. Innov. Appl. 2015, 64. [Google Scholar]
- Chen, Y.Y. Comparison analysis of edge detection algorithm. Agric. Netw. Inf. 2012, 31–33. [Google Scholar]
- Russ, J.C. The Image Processing Handbook; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Ziou, D.; Tabbone, S. Edge Detection Techniques—An Overview. Pattern Recognit. Image Anal. C/C Raspoznavaniye Obraz. I Anal. Izobr. 1998, 8, 537–559. [Google Scholar]
- Lu, N. Dominant Tree Species Classification Using GF-2 Images Based on Seasonal Characteristics. Master’s Thesis, Beijing Forestry University, Beijing, China, 2019. [Google Scholar]
- Jia, Y.H.; Yang, L.M. Object-Oriented method of shrub swamp’s boundary extraction. J. Geomat. 2019, 44, 51–55. [Google Scholar] [CrossRef]
- Betts, H.D.; Brown, L.M.J.; Stewart, G.H. Forest canopy gap detection and characterisation by the use of high-resolution Digital Elevation Models. N. Z. J. Ecol. 2005, 29, 95–103. [Google Scholar]
- Yang, J.; Jones, T.A.; Caspersen, J.P.; He, Y. Object-Based Canopy Gap Segmentation and Classification: Quantifying the Pros and Cons of Integrating Optical and LiDAR Data. Remote Sens. 2015, 7, 15917–15932. [Google Scholar] [CrossRef]
- Lisein, J.; Pierrot-Deseilligny, M.; Bonnet, S.; Lejeune, P. A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery. Forests 2013, 4, 922–944. [Google Scholar] [CrossRef]
- Li, Q. Correlation between Spatial Distribution Forest Canopy Gap and Plant Diversity Indices in Xishuangbanna Tropical Forest. Master’s Thesis, Yunnan University, Kunming, China, 2019. [Google Scholar]
- Hong, L.; Chu, S.S.; Peng, S.Y.; Xu, Q.L. Multiscale segmentation-optimized algorithm for high-spatial remote sensing imagery considering global and local optimizations. Natl. Remote Sens. Bull. 2020, 24, 1464–1475. [Google Scholar]
- Zhang, Y.J. A survey on evaluation methods for image segmentation. Pattern Recognit. 1996, 29, 1335–1346. [Google Scholar] [CrossRef]
- Dra˘gut¸, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Dian, Y.; Li, Z.-y.; Pang, Y. Spectral and Texture Features Combined for Forest Tree species Classification with Airborne Hyperspectral Imagery. J. Indian Soc. Remote Sens. 2014, 43, 101–107. [Google Scholar] [CrossRef]
- Su, W.; Li, J.; Chen, Y.; Liu, Z.; Zhang, J.; Low, T.M.; Suppiah, I.; Hashim, S.A.M. Textural and local spatial statistics for the objec” oriented classification of urban areas using high resolution imagery. Int. J. Remote Sens. 2008, 29, 3105–3117. [Google Scholar] [CrossRef]
- Han, N.; Du, H.; Zhou, G.; Xu, X.; Ge, H.; Liu, L.; Gao, G.-l.; Sun, S.-b. Exploring the synergistic use of multi-scale image object metrics for land-use/land-cover mapping using an object-based approach. Int. J. Remote Sens. 2015, 36, 3544–3562. [Google Scholar] [CrossRef]
- Ling, C.X.; Liu, H.; Ji, P.; Hu, H.; Wang, X.H.; Hou, R.X. Estimation of vegetation coverage based on VDVI index of UAV visible image. For. Eng. 2021, 37, 57–66. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wang, M.M.; Wang, S.Q.; Wu, D.Y. Extraction of vegetation information from visible unmanned aerial vehicle images. Trans. Chin. Soc. Agric. Eng. 2015, 31, 152–159. [Google Scholar]
- Zhan, G.Q.; Yang, G.D.; Wang, F.Y.; Xin, X.W.; Guo, C.; Zhao, Q. The random forest classification of wetland from GF-2 imagery based on the optimized feature space. J. Geo-Inf. Sci. 2018, 20, 1520–1528. [Google Scholar]
- Rigatti, S.J. Random Forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2004, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Zhang, J.; Guo, S.; Ye, Z.; Deng, H.; Hou, X.; Zhang, H. Urban Tree Classification Based on Object-Oriented Approach and Random Forest Algorithm Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery. Remote Sens. 2022, 14, 3885. [Google Scholar] [CrossRef]
- Zhou, R.; Yang, C.; Li, E.; Cai, X.; Yang, J.; Xia, Y. Object-Based Wetland Vegetation Classification Using Multi-Feature Selection of Unoccupied Aerial Vehicle RGB Imagery. Remote Sens. 2021, 13, 4910. [Google Scholar] [CrossRef]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Delany, S.J. k-Nearest Neighbour Classifiers. ACM Comput. Surv. (CSUR) 2007, 54, 1–25. [Google Scholar]
- Mao, X.G.; Xing, X.L.; Li, J.R.; Tan, L.Q.; Fan, W.Y. Object-Oriented recognition of forest gap based on aerial orthophoto. Sci. Silvae Sin. 2019, 55, 87–96. [Google Scholar]
- Oreti, L.; Giuliarelli, D.; Tomao, A.; Barbati, A. Object Oriented Classification for Mapping Mixed and Pure Forest Stands Using Very-High Resolution Imagery. Remote Sens. 2021, 13, 2508. [Google Scholar] [CrossRef]
- Ulloa-Torrealba, Y.; Stahlmann, R.; Wegmann, M.; Koellner, T. Over 150 Years of Change: Object-Oriented Analysis of Historical Land Cover in the Main River Catchment, Bavaria/Germany. Remote Sens. 2020, 12, 4048. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Tian, J.; Shi, C. Object-based spectral-phenological features for mapping invasive Spartina alterniflora. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102349. [Google Scholar] [CrossRef]
Shape Factor | Compactness Factor | |
---|---|---|
The 1st group | 0.1 | 0.5 |
The 2nd group | 0.3 | 0.5 |
The 3rd group | 0.5 | 0.5 |
The 4th group | 0.7 | 0.5 |
The 5th group | 0.9 | 0.5 |
The 6th group | 0.3 | 0.1 |
The 7th group | 0.3 | 0.3 |
The 8th group | 0.3 | 0.7 |
The 9th group | 0.3 | 0.9 |
Categories | Band | Object Features | Numbers of Features |
---|---|---|---|
Spectral features | Red | The average value of each band The standard deviation of the green band | 4 |
Green | |||
Blue | |||
Texture features | Red | GLCM entropy of green and blue bands GLCM homogeneity of the red band | 3 |
Green | |||
Blue | |||
Index features | VDVI | 1 |
Classification Method | KNN | SVM | RF | |||
---|---|---|---|---|---|---|
PA/(%) | UA/(%) | PA/(%) | UA/(%) | PA/(%) | UA/(%) | |
Gap | 93.93 | 100 | 98.76 | 98.88 | 98.10 | 100 |
Canopy | 73.91 | 100 | 98.52 | 99.56 | 100 | 99.34 |
Other | 100 | 82.60 | 100 | 100 | 100 | 100 |
OA/(%) | 91.49 | 98.58 | 99.50 | |||
Kappa coefficient | 0.8675 | 0.9637 | 0.9872 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, J.; Wang, Y.; Dong, P.; He, S.; Zhao, F.; Luan, G. Object-Oriented Canopy Gap Extraction from UAV Images Based on Edge Enhancement. Remote Sens. 2022, 14, 4762. https://doi.org/10.3390/rs14194762
Xia J, Wang Y, Dong P, He S, Zhao F, Luan G. Object-Oriented Canopy Gap Extraction from UAV Images Based on Edge Enhancement. Remote Sensing. 2022; 14(19):4762. https://doi.org/10.3390/rs14194762
Chicago/Turabian StyleXia, Jisheng, Yutong Wang, Pinliang Dong, Shijun He, Fei Zhao, and Guize Luan. 2022. "Object-Oriented Canopy Gap Extraction from UAV Images Based on Edge Enhancement" Remote Sensing 14, no. 19: 4762. https://doi.org/10.3390/rs14194762
APA StyleXia, J., Wang, Y., Dong, P., He, S., Zhao, F., & Luan, G. (2022). Object-Oriented Canopy Gap Extraction from UAV Images Based on Edge Enhancement. Remote Sensing, 14(19), 4762. https://doi.org/10.3390/rs14194762