Seasonal Flow Forecasting Using Satellite-Driven Precipitation Data for Awash and Omo-Gibe Basins, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used
2.2.1. Satellite-Driven Data
2.2.2. Hydrological Data
2.2.3. DEM Data
2.2.4. LULC and Soil Data
2.3. Methods
2.3.1. Bias Correction Analysis
2.3.2. Hydrological Model Setup
The Loss, Transform, and Routing Methods
Initial and Boundary Conditions
2.3.3. Reservoir Water Level Analysis
2.3.4. Flood Mapping and Semiology
2.3.5. Evaluation of Model Performance
3. Results
3.1. Model Performance
3.1.1. Performance of Bias Correction of Rainfall
3.1.2. Performance of the Hydrological Model with Historical Flow-Rate Data
3.1.3. Performance of Flood Maps in Year 2006
3.1.4. Performance of Reservoir Water Levels
3.2. Rainfall Forecasts at Year 2021
3.3. Reservoir Water Level Forecasts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siam, M.S.; Eltahir, E.A.B. Explaining and forecasting interannual variability in the flow of the Nile River. Hydrol. Earth Syst. Sci. 2015, 19, 1181–1192. [Google Scholar] [CrossRef]
- Slater, L.; Villarini, G.; Bradley, A. Evaluation of the skill of North-American Multi-Model Ensemble (NMME) Global Climate Models in predicting average and extreme precipitation and temperature over the continental USA. Clim. Dyn. 2019, 53, 7381–7396. [Google Scholar] [CrossRef]
- Romanescu, G.; Mihu-Pintilie, A.; Stoleriu, C.C.; Carboni, D.; Paveluc, L.E.; Cimpianu, C.I. A Comparative Analysis of Exceptional Flood Events in the Context of Heavy Rains in the Summer of 2010: Siret Basin (NE Romania) Case Study. Water 2018, 10, 216. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Viglione, A.; Carr, G.; Kuil, L.; Salinas, J.L.; Blöschl, G. Socio-hydrology: Conceptualising human-flood interactions. Hydrol. Earth Syst. Sci. 2013, 17, 3295–3303. [Google Scholar] [CrossRef]
- de Perez, E.C.; Stephens, E.; Bischiniotis, K.; van Aalst, M.; van den Hurk, B.; Mason, S.; Nissan, H.; Pappenberger, F. Should seasonal rainfall forecasts be used for flood preparedness. Hydrol. Earth Syst. Sci. 2017, 21, 4517–4524. [Google Scholar] [CrossRef]
- Korecha, D.; Sorteberg, A. Validation of operational seasonal rainfall forecast in Ethiopia. Water Resour. Res. 2013, 49, 7681–7697. [Google Scholar] [CrossRef]
- 2016 Ethiopia Flood. Deadly Floods Hit Ethiopia. Wikipedia. 6 April 2016. Available online: https://en.wikipedia.org/wiki/2016_Ethiopia_flood/ (accessed on 25 May 2022).
- Woldegebrael, S.M.; Kidanewold, B.B.; Melesse, A.M. Development and Evaluation of a Web-Based and Interactive Flood Management Tool for Awash and Omo-Gibe Basins, Ethiopia. Water 2022, 14, 2195. [Google Scholar] [CrossRef]
- Byrne, M.P.; Pendergrass, A.G.; Rapp, A.D.; Wodzicki, K.R. Response of the Intertropical Convergence Zone to Climate Change: Location, Width, and Strength. Curr. Clim. Chang. Rep. 2018, 4, 355–370. [Google Scholar] [CrossRef]
- Suzuki, T. Seasonal variation of the ITCZ and its characteristics over Central Africa. Theor. Appl. Climatol. 2010, 103, 39–60. [Google Scholar] [CrossRef]
- Nicholson, S.E. The predictability of rainfall over the Greater Horn of Africa. Part I. Prediction of seasonal rainfall. J. Hydrometeor. 2014, 15, 1011–1027. [Google Scholar] [CrossRef]
- Berhanu, B.K.; Seleshi, Y.; Demisse, S.S.; Assefa, A.M. Bias correction and characterization of climate forecast system re-analysis daily precipitation in Ethiopia using fuzzy overlay. Meteorol. Appl. 2016, 23, 230–243. [Google Scholar] [CrossRef]
- NMSA. Climatic & Agroclimatic Resources of Ethiopia; Meteorological Research Report Series; National Meteorological Services Agency: Addis Ababa, Ethiopia, 1996; Volume 1. [Google Scholar]
- Weisheimer, A.; Palmer, T.N. On the reliability of seasonal climate forecasts. J. R. Soc. Interface 2014, 11, 20131162. [Google Scholar] [CrossRef] [PubMed]
- Gain, A.; Apel, H.; Renaud, F.; Giupponi, C. Thresholds of hydrologic flow regime of a river and investigation of climate change impact—The case of the Lower Brahmaputra River Basin. Clim. Chang. 2013, 120, 463–475. [Google Scholar] [CrossRef]
- Food and Agricultural Organization of the United Nations. Soil Maps and Databases. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/ (accessed on 20 February 2021).
- ClimateSERV. SERVIR Global. Available online: https://climateserv.servirglobal.net/ (accessed on 31 May 2021).
- Becker, E.; Van den Dool, H.; Zhang, Q. Predictability and forecast skill in NMME. J. Clim. 2014, 27, 5891–5906. [Google Scholar] [CrossRef]
- Woldegebrael, S.M.; Berhanu, B.; Zaitchik, B.; Melesse, A.M. Rainfall and Flood Event Interrelationship—A Case Study of Awash and Omo-Gibe Basins, Ethiopia. Int. J. Sci. Eng. Res. 2020, 11, 332–343. [Google Scholar]
- Hawker, L.; Bates, P.; Neal, J.; Rougier, J. Perspectives on Digital Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-Accuracy Open Access Global DEM. Front. Earth Sci. 2018, 6, 233. [Google Scholar] [CrossRef]
- Samela, C.; Manfreda, S.; Nardi, F.; Grimaldi, S.; Roth, G.; Sole, A. DEM-based Approaches for the Identification of Flood Prone Areas. In Geophysical Research Abstracts; EGU General Assembly: Vienna, Austria, 2013; Volume 15, pp. 2013–8177. [Google Scholar]
- Degiorgis, M.; Gnecco, G.; Gorni, S.; Roth, G.; Sanguineti, M.; Taramasso, A.C. Classifiers for the detection of flood-prone areas using remotely sensed elevation data. J. Hydrol. 2012, 470–471, 302–315. [Google Scholar] [CrossRef]
- Zheng, L.; Xu, J.; Chen, Y.; Wu, Z. Increasing Streamflow in Poor Vegetated Mountain Basins Induced by Greening of Underlying Surface. Remote Sens. 2022, 14, 3223. [Google Scholar] [CrossRef]
- Lane, S.N.; Milledge, D.G. Impacts of upland open drains upon runoff generation: A numerical assessment of catchment-scale impacts. Hydrol. Processes 2013, 27, 1701–1726. [Google Scholar] [CrossRef]
- Berhanu, B.K.; Assefa, M.M.; Seleshi, Y. GIS-Based Hydrological Zones and Soil Geodatabase of Ethiopia, Catena; Elsevier: Amsterdam, The Netherlands, 2013; Volume 104, pp. 21–31. [Google Scholar]
- Dile, Y.T.; Berndtsson, R.; Setegn, S.G. Hydrological Response to Climate Change for Gilgel Abay River, in the Lake Tana Basin—Upper Blue Nile Basin of Ethiopia. PLoS ONE 2013, 8, e79296. [Google Scholar] [CrossRef]
- Ahmed, K.F.; Wang, G.; Silander, J.; Wilson, A.M.; Allen, J.M.; Horton, R.; Anyah, R. Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the US northeast. Glob. Planet. Change 2013, 100, 320–332. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. An improved standardization procedure to remove systematic low frequency variability biases in GCM simulations. Water Resour. Res. 2012, 48, W12601. [Google Scholar] [CrossRef]
- Turco, M.; Llasat, M.C.; Herrera, S.; Gutiérrez, J.M. Bias correction and downscaling of future rcm precipitation projections using a mos-analog technique. J. Geophys. Res. Atmos. 2017, 122, 2631–2648. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Chaumont, D.; Braun, M. Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. J. Hydrol. 2013, 479, 200–214. [Google Scholar] [CrossRef]
- Hagemann, S.; Chen, C.; Haerter, J.O.; Heinke, J.; Gerten, D.; Piani, C. Impact of statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeorol. 2011, 12, 556–578. [Google Scholar] [CrossRef]
- Fang, G.; Yang, J.; Chen, Y.; Zammit, C. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci. 2015, 19, 2547–2559. [Google Scholar] [CrossRef]
- Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Frankl, A.; Bao, A.; De Maeyer, P. Comparing Bias Correction Methods Used in Downscaling Precipitation and Temperature from Regional Climate Models: A Case Study from the Kaidu River Basin in Western China. Water 2018, 10, 1046. [Google Scholar] [CrossRef]
- Lafon, T.; Dadson, S.; Buys, G.; Prudhomme, C. Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods. Int. J. Climatol. 2013, 33, 1367–1381. [Google Scholar] [CrossRef]
- Verdin, A.; Funk, C.; Rajagopalan, B.; Kleiber, W. Kriging and Local Polynomial Methods for Blending Satellite-Derived and Gauge Precipitation Estimates to Support Hydrologic Early Warning Systems. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2552–2562. [Google Scholar] [CrossRef]
- Yang, X.; Xie, X.; Liu, D.L.; Ji, F.; Wang, L. Spatial Interpolation of Daily Rainfall Data for Local Climate Impact Assessment over the Greater Sydney Region. Adv. Meteorol. 2015, 2015, 563629. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Vickers, A.J.; Cook, N.R.; Gerds, T.; Gonen, M.; Obuchowski, N.; Pencina, M.J.; Kattan, M.W. Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology 2010, 21, 128–138. Available online: http://www.jstor.org/stable/25662818 (accessed on 4 September 2022). [CrossRef] [PubMed]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models’ part I-A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gharib, M.; Motamedvaziri, B.; Ghermezcheshmeh, B.; Ahmadi, H. Evaluation of ModClark model for simulating rainfall-runoff in Tangrah watershed, Iran. Appl. Ecol. Environ. Res. 2018, 16, 1053–1068. [Google Scholar] [CrossRef]
- Phillips, J.V.; Tadayon, S. Selection of Manning’s Roughness Coefficient for Natural and Constructed Vegetated and Non-Vegetated Channels, and Vegetation Maintenance Plan Guidelines for Vegetated Channels in Central Arizona; U.S. G.S. Scientific Investigations Report 2006–5108; US Geological Survey: Reston, VA, USA, 2006; 41p.
- Martins, O.; Kamar, O. Application of Basic Excel Programming to Linear Muskingum Model for Open Channel Routing. J. Civ. Environ. Res. 2017, 9, 39–54. [Google Scholar]
- Samani, H.M.; Shamsipour, G.A. Hydrologic flood routing in branched river systems via nonlinear optimization. J. Hydraul. Res. 2010, 2004, 55–59. [Google Scholar] [CrossRef]
- McCuen, R.H. Downstream effects of stormwater management basins. J. Hydraul. Div. 1979, 105, 1343–1356. [Google Scholar] [CrossRef]
- Kim, D.G.; Kim, S.J.; Ahn, T.J. Wetland Construction: Flood Control and Water Balance Analysis. Environ. Eng. Res. 2010, 15, 197–205. [Google Scholar] [CrossRef]
- Bock, A.R.; Hay, L.E.; Markstrom, S.L.; Emmerich, C.; Talbert, M. The U.S. Geological Survey Monthly Water Balance Model Futures Portal; U.S. Geological Survey Open-File Report 2016–1212; US Geological Survey: Reston, VA, USA, 2017; 21p. [CrossRef]
- Pattison, I.; Lane, S.N.; Hardy, R.J.; Reaney, S.M. The role of tributary relative timing and sequencing in controlling large floods. Water Resour. Res. 2014, 50, 5444–5458. [Google Scholar] [CrossRef]
- Tarekegn, T.H.; Haile, A.T.; Rientjes, T.; Reggiani, P.; Alkema, D. Assessment of an ASTER-generated DEM for 2D hydrodynamic flood modeling. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 457–465. [Google Scholar] [CrossRef]
- Tate, E.C.; Maidment, D.R. Floodplain Mapping Using HEC-RAS and ArcView GIS; University of Texas at Austin: Austin, TX, USA, 1999. [Google Scholar] [CrossRef]
- Dorner, W.; Schrenk, C.; Spachinger, K.; Metzka, R. Flood risk management plan-Relevance of the hydrological behavior of a catchment. In Proceedings of the XXIII Conference of the Danube Countries on the Hydrological Forecasting and Hydrological Bases of Water Management CD-ROM, Belgrade, Serbia, 28–31 August 2006; Bruck, S., Petkovic, T., Eds.; ICPDR—International Commission for the Protection of the Danube River: Vienna, Austria, 2006. [Google Scholar] [CrossRef]
- Mamo, S.; Berhanu, B.; Melesse, A.M. Historical flood events and hydrological extremes in Ethiopia. In Extreme Hydrology and Climate Variability; Elsevier: Amsterdam, The Netherlands, 2019; pp. 379–384. [Google Scholar] [CrossRef]
- Mandl, D.; Frye, S.; Cappelaere, P.; Handy, M.; Policelli, F.; Katjizeu, M.; Van Langenhove, G.; Aube, G.; Saulnier, J.F.; Sohlberg, R.; et al. Use of the Earth Observing One (EO-1) Satellite for the Namibia Sensorweb Flood Early Warning Pilot. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 298–308. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Lehner, B.; Rebelo, L.M.; Papa, F.; Hamilton, S.K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 2015, 158, 348–361. [Google Scholar] [CrossRef]
- Flood Observatory. 2006-174 Nile. Available online: https://floodobservatory.colorado.edu/2006174Nile.html (accessed on 17 December 2018).
- Flood Observatory. Images, 2006–2170 Omo Delta. Available online: https://floodobservatory.colorado.edu/images/2006170OmoDelta.jpg (accessed on 17 December 2018).
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424–425, 264–277. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Liu, P.; Li, L.; Guo, S.; Xiong, L.; Zhang, W.; Zhang, J.; Xu, C. Optimal design of seasonal flood limited water levels and its application for the Three Gorges Reservoir. J. Hydrol. 2015, 527, 1045–1053. [Google Scholar] [CrossRef]
- Guan, D.J.; Li, H.F.; Inohae, T.; Su, W.C.; Nagaie, T.; Hokao, K. Modeling urban land-use change by the integration of cellular automaton and Markov model. Ecol. Model. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Baulies, X.; Szejwach, G. LUCC Data Requirements Workshop. In Lucc Data Requirements Workshop: Survey of Needs, Gaps and Priorities on Data for Land-Use; Institut Cartogràfic de Catalunya: Barcelona, Spain, 1998. [Google Scholar]
- Conway, D. The climate and hydrology of the Upper Blue Nile River. Geograph. J. 2000, 166, 49–62. [Google Scholar] [CrossRef]
- Alemu, W.G.; Dagnachew, L.B. Flood hazard and risk assessment in Fogera Wereda using GIS & remote sensing. In Nile River Basin Hydrology; Melesse, A.M., Ed.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Cislaghi, A.; Masseroni, D.; Massari, C.; Camici, S.; Brocca, L. Combining a rainfall–runoff model and a regionalization approach for flood and water resource assessment in the western Po Valley, Italy. Hydrol. Sci. J. 2020, 65, 348–370. [Google Scholar] [CrossRef]
- De Bruijn, K.M.; Maran, C.; Zygnerski, M.; Jurado, J.; Burzel, A.; Jeuken, C.; Obeysekera, J. Flood Resilience of Critical Infrastructure: Approach and Method Applied to Fort Lauderdale, Florida. Water 2019, 11, 517. [Google Scholar] [CrossRef]
- Song, Y.; Park, Y.; Lee, J.; Park, M.; Song, Y. Flood Forecasting and Warning System Structures: Procedure and Application to a Small Urban Stream in South Korea. Water 2019, 11, 1571. [Google Scholar] [CrossRef]
- Mateo, C.M.; Hanasaki, N.; Komori, D.; Tanaka, K.; Kiguchi, M.; Champathong, A.; Sukhapunnaphan, T.; Yamazaki, D.; Oki, T. Assessing the impacts of reservoir operation to floodplain inundation by combining hydrological, reservoir management, and hydrodynamic models. Water Resour. Res. 2014, 50, 7245–7266. [Google Scholar] [CrossRef]
- Tasseff, B.; Bent, R.; Van Hentenryck, P. Optimization of Structural Flood Mitigation Strategies. Water Resour. Res. 2019, 55, 1490–1509. [Google Scholar] [CrossRef]
- Lucatero, D.; Madsen, H.; Refsgaard, J.C.; Kidmose, J.; Jensen, K.H. Seasonal streamflow forecasts in the Ahlergaarde catchment, Denmark: The effect of preprocessing and post-processing on skill and statistical consistency. Hydrol. Earth Syst. Sci. 2018, 22, 3601–3617. [Google Scholar] [CrossRef]
- Wongnarin, K.; Sayaka, Y.; Shinjiro, K. Use of Seasonal Streamflow Forecasts for Flood Mitigation with Adaptive Reservoir Operation: A Case Study of the Chao Phraya River Basin, Thailand, in 2011. Water 2020, 12, 3210. [Google Scholar] [CrossRef]
- Ehteram, M.; Mousavi, S.-F.; Karami, H.; Farzin, S.; Emami, M.; Othman, F.; Amini, Z.; Kisi, O.; El-Shafie, A. Fast convergence optimization model for single and multi-purposes reservoirs using hybrid algorithm. Adv. Eng. Inform. 2017, 32, 287–298. [Google Scholar] [CrossRef]
- Argaz, A.; Ouahman, B.; Darkaoui, A.; Bikhtar, H.; Ayouch, E.; Lazaar, R. Flood Hazard Mapping Using remote sensing and GIS Tools: A case study of Souss Watershed. J. Mater. Environ. Sci. 2019, 10, 170–181. [Google Scholar]
SN | Basin Name | River Name | R2 | NSE | Pbias | KGE′ |
---|---|---|---|---|---|---|
1 | Awash | Awash-Kuntire | 0.73 | 0.68 | 43.32 | −0.142 |
2 | Awash-Hombole | 0.79 | 0.71 | 113.84 | −0.574 | |
3 | Awash-Below Koka | 0.82 | 0.45 | 52.93 | −0.137 | |
4 | Methara | 0.54 | - | 108.36 | −0.378 | |
5 | Awash-7 | 0.66 | 0.59 | 73.74 | −0.179 | |
6 | Awash-Sedi | 0.66 | - | 63.91 | −0.576 | |
7 | Kesem | 0.82 | 0.34 | 69.42 | −0.229 | |
8 | Awash-Werer | 0.73 | - | 31.85 | −0.095 | |
9 | Awash-Adaitu | 0.65 | 0.52 | 4.41 | −0.008 | |
10 | Omo-Gibe | Gibe-Tolai | 0.78 | 0.60 | 22.32 | −0.048 |
11 | Gibe-Abelti | 0.70 | 0.53 | 57.54 | −0.206 | |
12 | Gojeb | 0.44 | - | 103.71 | −0.477 |
Basin Name | Floodplain Area | Boundary Conditions (BC) | Flood Inundation Area, km2 | Model Performance | |||
---|---|---|---|---|---|---|---|
Upstream BC (Energy Slope) | Downstream BC | Captured on | Satellite | Model | |||
Awash | Upper Awash (Hombole to Awash-7) | Hydrographs (Hombole, Mojo, and Kelta rivers) | Friction slope | 3 September 2006 | 138.95 | 133.42 | 0.96016 |
Middle Awash (Awash-7 to Gewane) | Hydrographs (Awash-7, Arba Bordede and Kesem rivers) | 522.98 | 454.36 | 0.86879 | |||
Lower Awash (Gewane to Outlet) | Hydrographs (Awash at Adaitu, Mile and Logia rivers) | 793.93 | 711.62 | 0.89632 | |||
Omo-Gibe | Lower Omo (Omorate to Outlet) | Hydrograph of Omo at Omorate | Friction slope | 21 August 2006 | 241.17 | 187.79 | 0.77867 |
Total | 1697.03 | 1487.18 |
Res. Name | Year | Months/Season | Flows (m3s−1) | Reservoir Water Level (m) | ||
---|---|---|---|---|---|---|
Forecasted 2021 | Observed 2008 | Forecasted 2021 | Observed 2008 | |||
Koka | 2008 analogue year | June | 41.50 | 55.0 | 104.40 | 102.95 |
July | 244.47 | 417.2 | 105.60 | 105.36 | ||
August | 729.44 | 853.3 | 110.00 | 109.70 | ||
September | 276.63 | 515.4 | 111.00 | 110.21 | ||
Efficiency of the model results compared between the 2008 analogue year observation and 2021 forecast and reservoir flows and water levels | ||||||
R2 | 0.9223 | 0.9916 | ||||
NSE | 0.8712 | 0.9509 |
Res. Name | Year | Months/Season | Flows (m3s−1) | Reservoir Water Level (m) | ||
---|---|---|---|---|---|---|
Forecasted 2021 | Observed 2021 | Forecasted 2021 | Observed 2021 | |||
Koka | 2021 flood season | June | 41.50 | 103.6 | 104.40 | 103.41 |
July | 244.47 | 437.1 | 105.60 | 105.85 | ||
August | 729.44 | 891.0 | 110.00 | 108.67 | ||
September | 276.63 | 463.0 | 111.00 | 110.36 | ||
Efficiency of the model results between the observed and model flow forecasts and reservoir water levels | ||||||
R2 | 0.9724 | 0.9569 | ||||
NSE | 0.8979 | 0.8861 | ||||
Gibe-3 | June | 128.07 | 336.3 | 858.10 | 862.14 | |
July | 2482.79 | 942.4 | 869.15 | 871.12 | ||
August | 3658.84 | 1529.2 | 888.00 | 885.16 | ||
September | 1984.78 | 1058.0 | 892.00 | 891.39 | ||
Efficiency of the model results between the observed and model flow forecasts and reservoir water levels | ||||||
R2 | 0.9267 | 0.9918 | ||||
NSE | 0.9166 | 0.9458 |
Year | Month | Levelt−1, m | Area, km2 | Volt−1, MCM | Inflow, MCM | Rainfall, mm | Avg. Area | Evap., mm | Outflow, MCM | Seepage, MCM | Volt, MCM | R. Levelt, m |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Koka Reservoir | ||||||||||||
2008 | June | 104.67 | 125.77 | 294.34 | 50.92 | 93.10 | 122.09 | 200.00 | 119.91 | 2.44 | 209.86 | 103.90 |
July | 103.90 | 118.40 | 209.86 | 387.61 | 251.90 | 128.80 | 184.00 | 110.29 | 2.37 | 493.56 | 106.20 | |
August | 106.20 | 139.20 | 493.56 | 786.49 | 251.90 | 153.39 | 174.00 | 244.70 | 2.67 | 1044.63 | 109.50 | |
September | 109.50 | 167.57 | 1044.63 | 481.53 | 133.70 | 167.57 | 174.00 | 256.66 | 2.92 | 1259.83 | 110.58 | |
Average year | June | 104.67 | 125.77 | 294.34 | 92.50 | 58.00 | 124.29 | 200.00 | 119.91 | 2.49 | 246.79 | 104.20 |
July | 104.20 | 122.80 | 246.79 | 397.22 | 83.00 | 131.20 | 184.00 | 110.29 | 2.41 | 518.06 | 106.40 | |
August | 106.40 | 139.60 | 518.06 | 813.95 | 212.00 | 155.94 | 174.00 | 244.70 | 2.71 | 1090.53 | 109.80 | |
September | 109.80 | 172.29 | 1090.53 | 424.68 | 186.00 | 172.29 | 174.00 | 256.66 | 3.00 | 1257.62 | 110.62 | |
Forecasted | June | 104.67 | 125.77 | 294.34 | 0.35 | 57.49 | 123.74 | 200.00 | 119.91 | 2.47 | 154.67 | 103.30 |
July | 103.30 | 121.70 | 154.67 | 375.65 | 201.17 | 133.95 | 184.00 | 110.29 | 2.46 | 419.87 | 105.70 | |
August | 105.70 | 146.20 | 419.87 | 891.01 | 172.55 | 161.60 | 174.00 | 244.70 | 2.81 | 1063.14 | 109.60 | |
September | 109.60 | 177.00 | 1063.1 | 474.86 | 90.01 | 177.00 | 174.00 | 256.66 | 3.08 | 1263.39 | 110.60 | |
Gibe-3 Reservoir | ||||||||||||
2008 | June | 865.71 | 157.50 | 10,056.50 | 1105.6 | 204.00 | 158.75 | 69.00 | 1040.67 | 1.10 | 10,141.76 | 866.00 |
July | 866.00 | 160.00 | 10,141.76 | 3253.0 | 241.00 | 167.50 | 56.40 | 988.80 | 0.94 | 12,435.94 | 880.00 | |
August | 880.00 | 175.00 | 12,435.94 | 5784.2 | 236.00 | 187.50 | 59.60 | 1115.97 | 1.12 | 17,136.12 | 894.00 | |
September | 894.00 | 200.00 | 17,136.12 | 3416.1 | 163.00 | 200.00 | 67.60 | 1944.37 | 1.35 | 18,625.58 | 894.00 | |
Average year | June | 865.71 | 157.50 | 10,056.50 | 897.00 | 204.00 | 157.50 | 69.00 | 1040.67 | 1.09 | 9933.00 | 864.00 |
July | 864.00 | 157.50 | 9933.00 | 2542.90 | 241.00 | 162.50 | 56.40 | 988.80 | 0.92 | 11,516.18 | 874.00 | |
August | 874.00 | 167.50 | 11,516.18 | 4078.90 | 236.00 | 176.25 | 59.60 | 1115.97 | 1.05 | 14,509.15 | 894.00 | |
September | 894.00 | 185.00 | 14,509.15 | 2739.40 | 163.00 | 185.00 | 67.60 | 1944.37 | 1.25 | 15,320.58 | 894.00 | |
Forecasted | June | 865.71 | 157.50 | 10,056.50 | 219.54 | 57.49 | 158.75 | 69.00 | 1040.67 | 1.10 | 9232.45 | 860.10 |
July | 860.10 | 160.00 | 9232.45 | 2278.89 | 201.17 | 168.75 | 56.40 | 988.80 | 0.95 | 10,546.01 | 869.15 | |
August | 869.15 | 177.50 | 10,546.01 | 4179.83 | 172.55 | 188.75 | 59.60 | 1115.97 | 1.12 | 13,630.06 | 890.00 | |
September | 890.00 | 200.00 | 13,630.10 | 2024.51 | 90.01 | 200.00 | 67.60 | 1944.37 | 1.35 | 13,713.33 | 892.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woldegebrael, S.M.; Kidanewold, B.B.; Melesse, A.M. Seasonal Flow Forecasting Using Satellite-Driven Precipitation Data for Awash and Omo-Gibe Basins, Ethiopia. Remote Sens. 2022, 14, 4518. https://doi.org/10.3390/rs14184518
Woldegebrael SM, Kidanewold BB, Melesse AM. Seasonal Flow Forecasting Using Satellite-Driven Precipitation Data for Awash and Omo-Gibe Basins, Ethiopia. Remote Sensing. 2022; 14(18):4518. https://doi.org/10.3390/rs14184518
Chicago/Turabian StyleWoldegebrael, Surafel M., Belete B. Kidanewold, and Assefa M. Melesse. 2022. "Seasonal Flow Forecasting Using Satellite-Driven Precipitation Data for Awash and Omo-Gibe Basins, Ethiopia" Remote Sensing 14, no. 18: 4518. https://doi.org/10.3390/rs14184518
APA StyleWoldegebrael, S. M., Kidanewold, B. B., & Melesse, A. M. (2022). Seasonal Flow Forecasting Using Satellite-Driven Precipitation Data for Awash and Omo-Gibe Basins, Ethiopia. Remote Sensing, 14(18), 4518. https://doi.org/10.3390/rs14184518