Monitoring of Plastic Islands in River Environment Using Sentinel-1 SAR Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data
2.3. SAR Pre-Processing
2.4. Image Analysis
2.5. Classifying Plastic Accumulation
2.6. Change Detection Methods
2.7. Quantitative Comparison and Statistical Test for Setting Threshold
2.8. Heatmap Creation
2.9. Scattering Model for Plastic Accumulation
3. Results
3.1. Initial Observations of Plastic Accumulations by Dams
3.2. Preliminary Analysis of Backscattering: Potpecko Lake, Serbia
3.3. River Drina, Bosnia and Herzegovina
3.4. Initial Observations of Plastic Accumulations by Dams
3.5. Testing the Statistical Modelling
3.6. Heatmap Creation on Different Regions of Study
4. Discussion
4.1. Visibility of Plastic Accumulation
4.2. Detectors
4.3. Heatmaps
5. Future Work
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gall, S.C.; Thompson, R.C. The Impact of Debris on Marine Life. Mar. Pollut. Bull. 2015, 92, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Derraik, J.G.B. The Pollution of the Marine Environment by Plastic Debris: A Review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef]
- Bouwmeester, H.; Hollman, P.C.H.; Peters, R.J.B. Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. Environ. Sci. Technol. 2015, 49, 8932–8947. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Vethaak, A.D.; Lavorante, B.R.B.O.; Lundebye, A.; Guilhermino, L. Marine Microplastic Debris: An Emerging Issue for Food Security, Food Safety and Human Health. Mar. Pollut. Bull. 2018, 133, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef]
- Isensee, K.; Valdes, L. GSDR 2015 Brief: Marine Litter: Microplastics; IOC/UNESCO: New York, NY, USA, 2015. [Google Scholar]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic Waste Inputs from Land into the Ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Borelle, S.B.; Ringma, J.; Law, K.L.; Monnahan, C.C.; Lebreton, L. Predicted Growth in Plastic Waste Exceeds Efforts to Mitigate Plastic Pollution. Science 2020, 369, 1515–1518. [Google Scholar] [CrossRef]
- Lebreton, L.C.M.; van der Zwet, J.; Damsteeg, J.; Slat, B.; Andrady, A.; Reisser, J. River Plastic Emissions to the World’s Oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef]
- Dris, R.; Imhof, H.; Sanchez, W.; Gasperi, J.; Galgani, F.; Tassin, B.; Laforsch, C. Beyond the Ocean: Contamination of Freshwater Ecosystems with (micro-)plastic particles. Environ. Chem 2015, 12, 539–550. [Google Scholar] [CrossRef]
- Van der Wal, M.; Van der Meulen, M.; Tweehuijsen, G.; Peterlin, M.; Palatinus, A.; Viršek, M.K.; Coscia, L.; Kržan, A. Identification and Assessment of Riverine Input of (Marine) Litter; Final Report for European Commission DG Environment under Framework Contract No. ENV.D.2/FRA/2012/0025; Eunomia Research & Consulting Ltd.: Bristol, UK, 2015. [Google Scholar]
- Mani, T.; Hauk, A.; Walter, U.; Burkhardt-Holm, P. Microplastics profile along the Rhine River. Sci. Rep. 2015, 5, 17988. [Google Scholar] [CrossRef] [Green Version]
- Yonkos, L.; Friedel, E.; Perez-Reyes, A.; Ghosal, S.; Arthur, C. Microplastics in Four Estuarine Rivers in Chesapeake Bay, USA. Environ. Sci. Technol. 2014, 48, 14195–14202. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.; Lattin, G.; Zellers, A. Quantity and Type of Plastic Debris Flowing from Two Urban Rivers to Coastal Waters and Beaches of Southern California. J. Integr. Coast. Zone. Manag. 2011, 11, 65–73. [Google Scholar] [CrossRef]
- Lozano, R.L.; Mouat, J. Marine Litter in the North-East Atlantic Region: Assessment and Priorities for Response; KIMO International: London, UK, 2009. [Google Scholar]
- Cole, M.; Lindeque, P.; Halsband, C.; Goodhead, R.; Moger, J.; Galloway, T.S. Microplastic Ingestion by Zooplankton. Environ. Sci. Terminol. 2013, 47, 6646–6655. [Google Scholar] [CrossRef]
- Anrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Ryan, P.G.; Moore, C.J.; Van Franeker, J.A.; Moloney, C.L. Monitoring the abundance of plastic debris in the marine environment. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1999–2012. [Google Scholar] [CrossRef] [PubMed]
- OSPAR. OSPAR Pilot Project on Monitoring Marine Beach Litter; OSPAR Commission: London, UK, 2007. [Google Scholar]
- Biermann, L.; Clewley, D.; Martinez-Vicente, V.; Topouzelis, K. Finding Plastic Patches in Coastal Waters Using Optical Satellite Data. Sci. Rep. 2020, 10, 5364. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papakonstantinou, A.; Garaba, S.P. Detection of Floating Plastics from Satellite and Unmanned Aerial Systems (Plastic Litter Project 2018). Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 175–183. [Google Scholar] [CrossRef]
- Garcia-Garin, O.; Monleon-Getino, T.; Lopez-Brosa, P.; Borrell, A.; Aguilar, A.; Borja-Robalino, R.; Cardona, L.; Vighi, M. Automatic detection and quantification of floating marine macro-litter in aerial images: Introducing a novel deep learning approach connected to a web application in R. Environ. Pollut. 2021, 273, 116490. [Google Scholar] [CrossRef]
- Gomez, A.S.; Scandolo, L.; Eisemann, E. A Learning Approach for River Debris Detection. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102682. [Google Scholar]
- Toth, C.; Jozkow, G. Remote Sensing Platforms and Sensors: A Survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Van der Wal, D.; Herman, P.M.J.; Dool, A.W. Characterisation of Surface Roughness and Sediment Texture of Intertidal Flats Using ERS SAR Imagery. Remote Sens. Environ. 2005, 98, 96–109. [Google Scholar] [CrossRef]
- Mattia, F.; Toan, T.L.; Souyris, J.C.; De Carolis, C.; Floury, N.; Posa, F.; Pasquariello, N.G. The Effect of Surface Roughness of Multifrequency Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 954–966. [Google Scholar] [CrossRef]
- Lyzenga, D.R.; Marmorino, G.O.; Johannessen, J.A. Chapter 8. Ocean currents and current gradients. In Synthetic Aperture Radar Marine User’s Manual; Jackson, C.R., Apel, J.R., Eds.; U.S Department of Commerce National Oceanic and Atmospheric Administration (NOAA): Washington, DC, USA, 2004; pp. 263–276. [Google Scholar]
- Mitidieri, F.; Papa, M.N.; Amitrano, D.; Ruello, G. River Morphology Monitoring Using Multitemporal SAR Data: Preliminary Results. Eur. J. Remote Sens. 2016, 49, 889–898. [Google Scholar] [CrossRef]
- Vickers, H.; Malnes, E.; Hogda, K. Long-Term Water Surface Area Monitoring and Derived Water Level Using Synthetic Aperture Radar (SAR) at Altevatn, a Medium-Sized Arctic Lake. Remote Sens. 2019, 11, 2780. [Google Scholar] [CrossRef]
- Ferrentino, E.; Nunziata, F.; Buono, A.; Urciuoli, A.; Migliaccio, M. Multi-polarization and multi-temporal Sentinel-1 SAR imagery to analyze the variations in the water-body of reservoirs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 840–846. [Google Scholar]
- Phillips, O.M. Radar Returns from the Sea Surface–Bragg Scattering and Breaking Waves. J. Phys. Oceanogr. 1988, 18, 1065–1074. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable Sediment Management in Reservoirs and Regulated Rivers: Experiences from Five Countries. Earth’s Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Watkins, L.; McGrattan, S.; Sullivan, P.J.; Walter, M.T. The Effect of Dams on River Transport of Microplastic Pollution. Sci. Total Environ. 2019, 664, 834–840. [Google Scholar] [CrossRef]
- Molkov, A.A.; Fedorov, S.V.; Pelevin, V.V.; Korchemkina, E.N. Regional Models for High-Resolution Retrieval of Chlorophyll a and TSM Concentrations in the Gorky Reservoir by Sentinel-2 Imagery. Remote Sens. 2019, 11, 1215. [Google Scholar] [CrossRef]
- Reyes-Carmona, C.; Barra, A.; Galve, J.P.; Monserrat, O.; Perez-Pena, J.V.; Mateos, R.S.; Notti, D.; Ruano, P.; Millares, A.; López-Vinielles, J.; et al. Sentinel-1 DInSAR for Monitoring Active Landslides in Critical Infrastructures: The Case of the Rules Reservoir (Southern Spain). Remote Sens. 2020, 12, 809. [Google Scholar] [CrossRef]
- Emric, E. Trash Fills Bosnia River Faster than Workers can Pull it Out, AP News. 2021. Available online: https://apnews.com/article/environment-serbia-hydroelectric-power-95866b7e3af63b9608218e89791df5d0 (accessed on 7 June 2022).
- Maximenko, N.; Corradi, P.; Law, K.L.; Van Sebille, E.; Garaba, S.P.; Lampitt, R.S.; Galgani, F.; Martinez-Vicente, V.; Goddijn-Murphy, L.; Veiga, J.M.; et al. Toward the Integrated Marine Debris Observing Platform. Front. Mar. Sci. 2019, 6, 447. [Google Scholar] [CrossRef]
- Salgado-Hernanz, P.M.; Bauza, J.; Alomar, C.; Compa, M.; Romero, L.; Deudero, S. Assessment of Marine Litter Through Remote Sensing: Recent Approaches and Future Goals. Mar. Pollut. Bull. 2021, 168, 112347. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Vicente, V.; Clark, J.R.; Corradi, P.; Aliani, S.; Arias, M.; Bochow, M.; Bonnery, G.; Cole, M.; Cózar, A.; Donnelly, R.; et al. Measuring Marine Plastic Debris from Space: Initial Assessment of Observation Requirements. Remote Sens. 2019, 11, 2443. [Google Scholar] [CrossRef]
- Qi, L.; Wang, N.; Hu, C.; Holt, B. On the Capacity of Sentienl-1 Synthetic Aperture Radar in Detecting Floating Macroalgae and Other Floating Matters. Remote Sens. Environ. 2022, 280, 113188. [Google Scholar] [CrossRef]
- Hogg, D.; Vergunst, T. Eunomia 2017 Final Report: A Comprehensive Assessment of the Current Waste Management Situation in South East Europe and Future Perspectives for the Sector Including Options for Regional Co-Operation in Recycling of Electric and Electronic Waste; European Union: Luxembourg, 2017. [Google Scholar]
- Hijmans, R.J. Third Level Administrative Divisions, Bosnia and Herzegovina, 2015. Museum of Vertebrate Zoology, [Online]. Available online: https://geodata.lib.utexas.edu/catalog/stanford-xt594tq5034 (accessed on 12 August 2022).
- Hijmans, R.J. (Date—N/A). DIVA-GIS: Download Data by Country. DIVA-GIS. [Online]. Available online: https://www.diva-gis.org/Data (accessed on 12 August 2022).
- Li, Z.; Bethel, J. Image Coregistration in SAR Interferometry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 433–438. [Google Scholar]
- Constantini, M.; Zavagli, M.; Martin, J.; Medina, A.; Barghini, A.; Naya, J.; Hernando, C.; Macina, F.; Ruiz, I.; Nicolas, E.; et al. Automatic Coregistration of SAR and optical images exploiting complementary geometry and mutual information. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Novak, L.M.; Sechtin, M.B.; Cardullo, M.J. Studies of Target Detection Algorithms that use Polarimetric Radar Data. IEEE Trans. Aerosp. Electron. Syst. 1989, 25, 150–165. [Google Scholar] [CrossRef]
- Marino, A.; Nannini, M. Signal Models for Changes in Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Marino, A.; Hajnsek, I. A Change Detector Based on an Optimisation with Polarimetric SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4781–4798. [Google Scholar] [CrossRef]
- Akbari, V.; Anfinsen, S.N.; Doulgeris, A.P.; Eltoft, T.; Moser, G.; Serpico, S.B. Polarimetric SAR Change Detection with the Complex Hotelling-Lawley Trace Statistic. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3953–3966. [Google Scholar] [CrossRef]
- Marino, A. Trace Coherence: A New Operator for Polarimetric and Interferometric SAR Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2326–2339. [Google Scholar] [CrossRef]
- Akobeng, A. Understanding diagnostic tests 3: Receiver operating characters curves. Acta Paediatr. 2007, 96, 644–647. [Google Scholar] [CrossRef] [PubMed]
- Basu, B.; Sannigrahi, S.; Basu, A.S.; Pilla, F. Development of Novel Classification Algorithms for Detection of Floating Plastic Debris in Coastal Waterbodies Using Multispectral Sentinel-2 Remote Sensing Imagery. Remote Sens. 2021, 13, 1598. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papageorgiou, D.; Karagaitanakis, A.; Papakonstantinou, A.; Ballesteros, M.A. Remote Sensing of Sea Surface Artificial Floating Plastic Targets with Sentinel-2 and Unmanned Aerial Systems (Plastic Litter Project 2019). Remote Sens. 2020, 12, 2013. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simpson, M.D.; Marino, A.; de Maagt, P.; Gandini, E.; Hunter, P.; Spyrakos, E.; Tyler, A.; Telfer, T. Monitoring of Plastic Islands in River Environment Using Sentinel-1 SAR Data. Remote Sens. 2022, 14, 4473. https://doi.org/10.3390/rs14184473
Simpson MD, Marino A, de Maagt P, Gandini E, Hunter P, Spyrakos E, Tyler A, Telfer T. Monitoring of Plastic Islands in River Environment Using Sentinel-1 SAR Data. Remote Sensing. 2022; 14(18):4473. https://doi.org/10.3390/rs14184473
Chicago/Turabian StyleSimpson, Morgan David, Armando Marino, Peter de Maagt, Erio Gandini, Peter Hunter, Evangelos Spyrakos, Andrew Tyler, and Trevor Telfer. 2022. "Monitoring of Plastic Islands in River Environment Using Sentinel-1 SAR Data" Remote Sensing 14, no. 18: 4473. https://doi.org/10.3390/rs14184473
APA StyleSimpson, M. D., Marino, A., de Maagt, P., Gandini, E., Hunter, P., Spyrakos, E., Tyler, A., & Telfer, T. (2022). Monitoring of Plastic Islands in River Environment Using Sentinel-1 SAR Data. Remote Sensing, 14(18), 4473. https://doi.org/10.3390/rs14184473