Night-Time Skyglow Dynamics during the COVID-19 Epidemic in Guangbutun Region of Wuhan City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region and Sky Quality Meter Data
2.2. Preprocessing of Data
2.2.1. Removal of Cloud-Influenced Data (Including Snow and Ice Reflections)
2.2.2. Removal of Moon-Influenced Data
2.3. Methods
2.3.1. Shutdown Timing of Lights (STL)
2.3.2. Coefficient of Variation (CV)
2.3.3. Decrease Ratio (DR) and Recovery Ratio (RR)
3. Results
3.1. Effect of Lockdown on the Intraday Skyglow Pattern
- The urban sky darkened in stages over time;
- The sky brightness varied quickly, generally within a few minutes, and most of the time it was fluctuant;
- Changes in sky brightness were mainly at full or half clock.
3.2. Effect of Lockdown on the Fluctuation of Skyglow
3.3. Effect of Lockdown on the Day-to-Day Skyglow Dynamics
- 1 November 2019 to 19 January 2020: Guangbutun region had not yet entered the lockdown, and the night-time urban sky was quite bright;
- 28 January 2020 to 31 January 2020: During the four days of the lockdown, there was a significant rise in SQM measurements, indicating a quick reduction in sky brightness. Note that this trend went against the increasing brightening effects of the moon. The moon was getting close to full and the moon elevation was rising these days;
- 12 February 2020 to 20 February 2020 (The Dark Period): The night-time sky brightness stopped falling and stabilized, reaching its lowest point at 17 February 2020;
- 21 February 2020 to 12 April 2020 (The Recovery Period): The night-time sky brightness increased dramatically on 21 February, and the recovery stage began.
4. Discussion
4.1. Variability of Night-Time Skyglow Reduction and Recovery at Different Time Intervals
4.2. Brightening of the Night-Time Sky on 21 February 2020
4.3. Limitation and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Coronavirus. Available online: https://www.who.int/health-topics/coronavirus (accessed on 22 June 2022).
- World Health Organization (WHO). Novel Coronavirus (2019-nCoV), Situation Report—3. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200123-sitrep-3-2019-ncov.pdf (accessed on 22 June 2022).
- Kupferschmidt, K.; Cohen, J. Can China’s COVID-19 strategy work elsewhere? Science 2020, 367, 1061–1062. [Google Scholar] [CrossRef]
- Tian, S.Z.; Feng, R.Y.; Zhao, J.; Wang, L.Z. An Analysis of the Work Resumption in China under the COVID-19 Epidemic Based on Night Time Lights Data. ISPRS Int. J. Geo-Inf. 2021, 10, 614. [Google Scholar] [CrossRef]
- Jia, J.S.S.; Lu, X.; Yuan, Y.; Xu, G.; Jia, J.M.; Christakis, N.A. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 2020, 582, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Peng, Z.; Guo, Y.; Xiao, Y.; Zhang, L. Lockdown may partially halt the spread of 2019 novel coronavirus in Hubei province, China. MedRxiv 2020. [Google Scholar] [CrossRef]
- Lau, H.; Khosrawipour, V.; Kocbach, P.; Mikolajczyk, A.; Schubert, J.; Bania, J.; Khosrawipour, T. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J. Travel Med. 2020, 27. [Google Scholar] [CrossRef] [PubMed]
- Straka, W.; Kondragunta, S.; Wei, Z.G.; Zhang, H.; Miller, S.D.; Watts, A. Examining the Economic and Environmental Impacts of COVID-19 Using Earth Observation Data. Remote Sens. 2021, 13, 5. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.L.; de Miguel, A.S.; Roman, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The new world atlas of artificial night sky brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef] [PubMed]
- Bara, S.; Rodriguez-Aros, A.; Perez, M.; Tosar, B.; Lima, R.; de Miguel, A.D.; Zamorano, J. Estimating the relative contribution of streetlights, vehicles, and residential lighting to the urban night sky brightness. Light. Res. Technol. 2019, 51, 1092–1107. [Google Scholar] [CrossRef]
- Barentine, J.C.; Kundracik, F.; Kocifaj, M.; Sanders, J.C.; Esquerdo, G.A.; Dalton, A.M.; Foott, B.; Grauer, A.; Tucker, S.; Kyba, C.C.M. Recovering the city street lighting fraction from skyglow measurements in a large-scale municipal dimming experiment. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107120. [Google Scholar] [CrossRef]
- Jechow, A. Observing the Impact of WWF Earth Hour on Urban Light Pollution: A Case Study in Berlin 2018 Using Differential Photometry. Sustainability 2019, 11, 750. [Google Scholar] [CrossRef]
- Jechow, A.; Ribas, S.J.; Domingo, R.C.; Holker, F.; Kollath, Z.; Kyba, C.C.M. Tracking the dynamics of skyglow with differential photometry using a digital camera with fisheye lens. J. Quant. Spectrosc. Radiat. Transf. 2018, 209, 212–223. [Google Scholar] [CrossRef]
- Sciezor, T.; Kubala, M. Particulate matter as an amplifier for astronomical light pollution. Mon. Not. R. Astron. Soc. 2014, 444, 2487–2493. [Google Scholar] [CrossRef]
- Jechow, A.; Kollath, Z.; Ribas, S.J.; Spoelstra, H.; Holker, F.; Kyba, C.C.M. Imaging and mapping the impact of clouds on skyglow with all-sky photometry. Sci. Rep. 2017, 7, 6741. [Google Scholar] [CrossRef] [PubMed]
- Jechow, A.; Holker, F.; Kyba, C.C.M. Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas. Sci. Rep. 2019, 9, 1391. [Google Scholar] [CrossRef] [PubMed]
- Puschnig, J.; Schwope, A.; Posch, T.; Schwarz, R. The night sky brightness at Potsdam-Babelsberg including overcast and moonlit conditions. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 76–81. [Google Scholar] [CrossRef]
- Jechow, A.; Holker, F. Snowglow-The Amplification of Skyglow by Snow and Clouds Can Exceed Full Moon Illuminance in Suburban Areas. J. Imaging 2019, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Katz, Y.; Levin, N. Quantifying urban light pollution—A comparison between field measurements and EROS-B imagery. Remote Sens. Environ. 2016, 177, 65–77. [Google Scholar] [CrossRef]
- Bustamante-Calabria, M.; de Miguel, A.S.; Martin-Ruiz, S.; Ortiz, J.L.; Vilchez, J.M.; Pelegrina, A.; Garcia, A.; Zamorano, J.; Bennie, J.; Gaston, K.J. Effects of the COVID-19 Lockdown on Urban Light Emissions: Ground and Satellite Comparison. Remote Sens. 2021, 13, 258. [Google Scholar] [CrossRef]
- Ges, X.; Bara, S.; Garcia-Gil, M.; Zamorano, J.; Ribas, S.J.; Masana, E. Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters. J. Quant. Spectrosc. Radiat. Transf. 2018, 210, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Kollath, Z. Measuring and modelling light pollution at the Zselic Starry Sky Park. In Proceedings of the 5th Workshop of Young Researchers in Astronomy and Astrophysics, Eotvos Univ, Budapest, Hungary, 2–4 September 2009. [Google Scholar]
- Jechow, A.; Kyba, C.C.M.; Holker, F. Mapping the brightness and color of urban to rural skyglow with all-sky photometry. J. Quant. Spectrosc. Radiat. Transf. 2020, 250, 106988. [Google Scholar] [CrossRef]
- Jechow, A.; Holker, F. Evidence That Reduced Air and Road Traffic Decreased Artificial Night-Time Skyglow during COVID-19 Lockdown in Berlin, Germany. Remote Sens. 2020, 12, 3412. [Google Scholar] [CrossRef]
- Hanel, A.; Posch, T.; Ribas, S.J.; Aube, M.; Duriscoe, D.; Jechow, A.; Kollath, Z.; Lolkema, D.E.; Moore, C.; Schmidt, N.; et al. Measuring night sky brightness: Methods and challenges. J. Quant. Spectrosc. Radiat. Transf. 2018, 205, 278–290. [Google Scholar] [CrossRef]
- Zheng, S.; Fu, Y.Y.; Sun, Y.; Zhang, C.J.; Wang, Y.S.; Lichtfouse, E. High resolution mapping of nighttime light and air pollutants during the COVID-19 lockdown in Wuhan. Environ. Chem. Lett. 2021, 19, 3477–3485. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.F.; Tang, Y.; Huang, X.; Li, D.R. Monitoring Work Resumption of Wuhan in the COVID-19 Epidemic Using Daily Nighttime Light. Photogramm. Eng. Remote Sens. 2021, 87, 197–206. [Google Scholar] [CrossRef]
- Li, X.; Li, X.Y.; Li, D.R.; He, X.J.; Jendryke, M. A preliminary investigation of Luojia-1 night-time light imagery. Remote Sens. Lett. 2019, 10, 526–535. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G. Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution. Sensors 2018, 18, 2900. [Google Scholar] [CrossRef]
- Den Outer, P.; Lolkema, D.; Haaima, M.; Van der Hoff, R.; Spoelstra, H.; Schmidt, W. Stability of the Nine Sky Quality Meters in the Dutch Night Sky Brightness Monitoring Network. Sensors 2015, 15, 9466–9480. [Google Scholar] [CrossRef]
- Schnitt, S.; Ruhtz, T.; Fischer, J.; Hölker, F.; Kyba, C.C.M. Temperature Stability of the Sky Quality Meter. Sensors 2013, 13, 12166–12174. [Google Scholar] [CrossRef] [PubMed]
- Kyba, C.C.M.; Ruhtz, T.; Fischer, J.; Holker, F. Cloud Coverage Acts as an Amplifier for Ecological Light Pollution in Urban Ecosystems. PLoS ONE 2011, 6, e17307. [Google Scholar] [CrossRef] [Green Version]
- Roman, M.O.; Wang, Z.S.; Sun, Q.S.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; et al. NASA’s Black Marble nighttime lights product suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Zhao, X.Z.; Yu, B.L.; Liu, Y.; Yao, S.J.; Lian, T.; Chen, L.J.; Yang, C.S.; Chen, Z.Q.; Wu, J.P. NPP-VIIRS DNB Daily Data in Natural Disaster Assessment: Evidence from Selected Case Studies. Remote Sens. 2018, 10, 1526. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Shao, G.F.; Tang, L.N.; He, Y.R.; Wang, X.R.; Wang, Y.N.; Wang, H.W. Rapid Assessment of a Typhoon Disaster Based on NPP-VIIRS DNB Daily Data: The Case of an Urban Agglomeration along Western Taiwan Straits, China. Remote Sens. 2019, 11, 1709. [Google Scholar] [CrossRef]
- Unihedron. SQM-LU-DL Users Manual. Available online: http://unihedron.com/projects/sqm-lu-dl/ (accessed on 22 June 2022).
- Garstang, R.H. Model for artificial night-sky illumination. Publ. Astron. Soc. Pac. 1986, 98, 364–375. [Google Scholar] [CrossRef]
- Beijing Radio & Television Network. Aerial Photograph of Wuhan’s Yangtze River Light Display during the COVID-19 Pandemic. Available online: https://item.btime.com/44272ipr44f84t8uamu8cj2i8d1 (accessed on 24 July 2022).
- Pun, C.S.J.; So, C.W. Night-sky brightness monitoring in Hong Kong. Environ. Monit. Assess. 2012, 184, 2537–2557. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Shen, J.; Huang, Y.; Shen, X.; So, C.W.; Pun, C.S.J. Night sky brightness monitoring network in Wuxi, China. J. Quant. Spectrosc. Radiat. Transf. 2021, 258, 107219. [Google Scholar] [CrossRef] [PubMed]
- Pravettoni, M.; Strepparava, D.; Cereghetti, N.; Klett, S.; Andretta, M.; Steiger, M. Indoor calibration of Sky Quality Meters: Linearity, spectral responsivity and uncertainty analysis. J. Quant. Spectrosc. Radiat. Transf. 2016, 181, 74–86. [Google Scholar] [CrossRef]
Month | Average Temperature (°C) | Sunshine Hours (h) | Number of Rainy Days (day) | Volume of Precipitation (mm) |
---|---|---|---|---|
November | 12.9 | 108.3 | 10 | 56.7 |
December | 6.5 | 103.5 | 7 | 27.1 |
January | 4.1 | 93.9 | 16 | 113.2 |
February | 8.6 | 173.4 | 10 | 106.9 |
March | 13.0 | 224.7 | 12 | 84.4 |
April | 16.8 | 212.5 | 7 | 45.9 |
Time Interval | Number of Days |
---|---|
20:00–20:30 | 23 |
20:30–21:00 | 23 |
21:00–21:30 | 23 |
21:30–22:00 | 24 |
22:00–22:30 | 24 |
22:30–23:00 | 21 |
23:00–23:30 | 18 |
23:30–24:00 | 20 |
24:00–04:00 | 42 |
Date | Zenithal Sky Brightness (mcd/m2) | ||||||||
---|---|---|---|---|---|---|---|---|---|
20:00–20:30 | 20:30–21:00 | 21:00–21:30 | 21:30–22:00 | 22:00–22:30 | 22:30–23:00 | 23:00–23:30 | 23:30–0:00 | 0:00–4:00 | |
1 November 2019 | / | / | 47.4 | / | / | / | / | 7.3 | |
2 November 2019 | / | / | / | / | / | / | / | / | 7.3 |
3 November 2019 | / | / | / | / | / | / | / | / | 10.1 |
4 November 2019 | / | / | / | / | / | / | / | / | 10.8 |
5 November 2019 | / | / | / | / | / | / | / | / | 9.0 |
7 November 2019 | / | / | / | / | / | / | / | / | 9.3 |
8 November 2019 | / | / | / | / | / | / | / | / | 8.6 |
18 November 2019 | 33.2 | 32.8 | 31.8 | 30.8 | 12.1 | / | 10.3 | / | / |
20 November 2019 | 37.6 | / | / | / | / | / | / | / | / |
21 November 2019 | / | / | / | / | / | / | / | 11.0 | 7.1 |
22 November 2019 | 56.9 | 55.9 | 42.7 | 40.0 | 15.5 | 14.7 | 11.4 | 10.4 | 6.8 |
1 December 2019 | / | / | / | / | 19.6 | 22.6 | 18.6 | 16.3 | 9.5 |
2 December 2019 | / | / | / | / | / | 15.3 | 12.4 | 11.1 | 6.4 |
3 December 2019 | / | / | / | / | / | / | / | / | 6.5 |
4 December 2019 | / | / | / | / | / | / | / | / | 6.4 |
5 December 2019 | / | / | / | / | / | / | / | / | 9.3 |
6 December 2019 | / | / | / | / | / | / | / | / | 8.6 |
7 December 2019 | / | / | / | / | / | / | / | / | 7.1 |
8 December 2019 | / | / | / | / | / | / | / | / | 6.5 |
19 December 2019 | 50.2 | 55.7 | 62.8 | / | / | / | / | / | / |
26 December 2019 | 31.1 | 31.1 | 26.8 | 23.2 | / | / | 13.8 | 12.4 | 8.5 |
27 December 2019 | 42.4 | 42.3 | / | / | / | / | / | 9.4 | 6.8 |
29 December 2019 | / | 50.0 | / | 46.8 | 20.0 | / | / | / | 9.3 |
30 December 2019 | / | / | / | 71.0 | / | / | / | / | / |
17 January 2020 | / | 76.2 | 67.8 | 66.8 | 24.7 | 26.8 | / | / | / |
19 January 2020 | 65.1 | 60.9 | 54.3 | 50.3 | 24.1 | 23.7 | / | / | 9.7 |
20 January 2020 | / | / | / | / | / | 25.2 | / | / | 9.6 |
28 January 2020 | / | / | / | 41.1 | 37.0 | 26.9 | / | / | 8.3 |
29 January 2020 | / | / | / | / | 19.6 | 19.0 | 15.5 | 14.8 | 8.4 |
30 January 2020 | / | / | / | / | / | 15.7 | 13.3 | 13.3 | 6.9 |
31 January 2020 | / | / | / | / | / | / | 12.0 | 12.0 | 6.6 |
2 February 2020 | / | / | / | / | / | / | / | / | 9.3 |
3 February 2020 | / | / | / | / | / | / | / | / | 7.0 |
4 February 2020 | / | / | / | / | / | / | / | / | 6.7 |
12 February 2020 | 26.9 | 28.0 | 26.2 | / | / | / | / | / | / |
13 February 2020 | 32.7 | 33.0 | 32.1 | 15.1 | / | / | / | / | / |
16 February 2020 | 27.4 | 26.6 | 24.9 | 11.7 | 10.4 | 10.3 | 8.9 | 8.9 | 5.6 |
17 February 2020 | 28.3 | 26.2 | 14.9 | 10.6 | 9.5 | 9.4 | 8.3 | 8.3 | 5.3 |
19 February 2020 | 29.7 | 29.4 | 16.0 | 12.6 | 11.4 | 11.2 | 9.7 | 9.5 | 5.2 |
20 February 2020 | 32.6 | 32.2 | 17.8 | 15.6 | / | 14.0 | / | / | / |
21 February 2020 | 50.8 | / | 31.4 | 24.5 | 20.8 | 19.7 | 16.8 | 16.1 | 7.1 |
22 February 2020 | / | / | / | 18.6 | 16.9 | / | / | / | / |
23 February 2020 | 46.4 | 46.9 | 25.9 | 20.9 | 17.6 | 17.9 | / | 15.0 | / |
29 February 2020 | / | / | / | / | / | / | / | / | 5.9 |
12 March 2020 | 36.8 | 36.8 | 21.9 | / | / | / | / | / | / |
13 March 2020 | / | / | 27.2 | / | 19.4 | / | / | / | / |
14 March 2020 | 32.7 | 32.3 | 17.9 | 14.6 | 13.2 | 12.5 | 11.8 | / | / |
16 March 2020 | / | / | / | / | / | / | / | / | 5.7 |
17 March 2020 | 34.3 | 30.0 | 29.1 | 28.0 | 27.8 | 14.2 | 14.0 | 14.4 | 6.0 |
18 March 2020 | 22.5 | 22.6 | 22.2 | 22.1 | 21.4 | 9.4 | 9.3 | 9.4 | 5.0 |
19 March 2020 | 35.1 | 35.2 | 33.7 | 32.8 | 31.8 | 14.0 | 13.5 | 13.1 | 5.9 |
20 March 2020 | 34.2 | 34.3 | 33.0 | 32.5 | 29.7 | 12.7 | 12.1 | 12.3 | 6.5 |
21 March 2020 | / | / | / | / | / | / | / | / | 6.6 |
23 March 2020 | 42.8 | 40.3 | 38.2 | 20.2 | 18.0 | 14.3 | 13.7 | 13.6 | 8.4 |
24 March 2020 | / | / | / | / | 15.9 | / | / | / | / |
25 March 2020 | / | / | / | 31.2 | 28.1 | / | / | / | / |
31 March 2020 | / | / | / | / | / | / | / | / | 6.9 |
11 April 2020 | 42.1 | 42.4 | / | 16.0 | 13.8 | / | / | / | / |
Time Interval | Decrease Ratio (DR) | Recovery Ratio (RR) |
---|---|---|
20:00–20:30 | 34.5% | 18.1% |
20:30–21:00 | 42.2% | 12.6% |
21:00–21:30 | 53.9% | 12.7% |
21:30–22:00 | 72.1% | 22.6% |
22:00–22:30 | 45.8% | 55.5% * |
22:30–23:00 | 47.6% | 14.7% |
23:00–23:30 | 32.6% | 30.4% |
23:30–24:00 | 24.3% | 38.2% |
24:00–04:00 | 34.4% | 12.4% |
Date | μg/m3 | ZSB (mcd/m2) | |||
---|---|---|---|---|---|
PM 2.5 | PM10 | 22:30–23:00 | 23:30–24:00 | After Midnight | |
4 February 2020 | 50 | 57 | / | / | 7.00 |
5 February 2020 | 81 | 91 | / | / | 6.73 |
16 February 2020 | 12 | 20 | 10.3 | 8.93 | 5.63 |
17 February 2020 | 12 | 22 | 9.35 | 8.30 | 5.30 |
19 February 2020 | 24 | 30 | 11.2 | 9.50 | 5.20 |
20 February 2020 | 34 | 47 | 14.0 | / | / |
21 February 2020 | 40 | 47 | 19.7 | 16.1 | 7.14 |
23 February 2020 | 31 | 64 | 17.9 | 15.0 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Li, X.; Zhu, C. Night-Time Skyglow Dynamics during the COVID-19 Epidemic in Guangbutun Region of Wuhan City. Remote Sens. 2022, 14, 4451. https://doi.org/10.3390/rs14184451
Li C, Li X, Zhu C. Night-Time Skyglow Dynamics during the COVID-19 Epidemic in Guangbutun Region of Wuhan City. Remote Sensing. 2022; 14(18):4451. https://doi.org/10.3390/rs14184451
Chicago/Turabian StyleLi, Chengen, Xi Li, and Changjun Zhu. 2022. "Night-Time Skyglow Dynamics during the COVID-19 Epidemic in Guangbutun Region of Wuhan City" Remote Sensing 14, no. 18: 4451. https://doi.org/10.3390/rs14184451
APA StyleLi, C., Li, X., & Zhu, C. (2022). Night-Time Skyglow Dynamics during the COVID-19 Epidemic in Guangbutun Region of Wuhan City. Remote Sensing, 14(18), 4451. https://doi.org/10.3390/rs14184451