Joint Satellite-Transmitter and Ground-Receiver Digital Pre-Distortion for Active Phased Arrays in LEO Satellite Communications
Abstract
:1. Introduction
2. Principle Analysis of the Proposed JSG-DPD Technique
2.1. The Proposed JSD-DPD Technique
2.2. OFDM Technique
2.3. LEO Satellite-Ground Channel
2.4. Noise Reduction Method
3. DPD Coefficients Recognition Algorithm
3.1. The JSG-DPD Indirect Learning Structure
3.2. Generalized Memory Polynomial (GMP) Model
3.3. Coefficient Estimation Algorithm
4. Experimental Validation and Results Analysis
4.1. Experimental Setup
4.2. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, Y.; Liu, Y.; Zhou, Y.; Yuan, J.; Cao, H.; Shi, J. Broadband LEO Satellite Communications: Architectures and Key Technologies. IEEE Wirel. Commun. 2019, 26, 55–61. [Google Scholar] [CrossRef]
- Leyva-Mayorga, I.; Soret, B.; Röper, M.; Wübben, D.; Matthiesen, B.; Dekorsy, A.; Popovski, P. LEO Small-Satellite Constellations for 5G and Beyond-5G Communications. IEEE Access 2020, 8, 184955–184964. [Google Scholar] [CrossRef]
- Hong, W.; Jiang, Z.H.; Yu, C.; Zhou, J.; Chen, P.; Yu, Z.; Zhang, H.; Yang, B.; Pang, X.; Jiang, M.; et al. Multibeam Antenna Technologies for 5G Wireless Communications. IEEE Trans. Antennas Propag. 2017, 65, 6231–6249. [Google Scholar] [CrossRef]
- Kumar, B.P.; Kumar, C.; Kumar, V.S.; Srinivasan, V.V. Reliability Considerations of Spherical Phased Array Antenna for Satellites. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1381–1391. [Google Scholar] [CrossRef]
- You, D.; Takahashi, Y.; Takeda, S.; Moritani, M.; Hagiwara, H.; Koike, S.; Lee, H.; Wang, Y.; Li, Z.; Pang, J.; et al. A Ka-Band 16-Element Deployable Active Phased Array Transmitter for Satellite Communication. In Proceedings of the 2021 IEEE MTT-S International Microwave Symposium (IMS), Atlanta, GA, USA, 6–11 June 2021; pp. 799–802. [Google Scholar] [CrossRef]
- Moon, S.M.; Yun, S.; Yom, I.B.; Lee, H.L. Phased Array Shaped-Beam Satellite Antenna With Boosted-Beam Control. IEEE Trans. Antennas Propag. 2019, 67, 7633–7636. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Li, Z.; Li, Y.; Chen, M.; Zhang, Z.; Geng, Y. Leaky-Wave Antenna Arrays for Flexible Dual-Beam Switching. IEEE Trans. Antennas Propag. 2021, 69, 8376–8386. [Google Scholar] [CrossRef]
- Jayati, A.E.; Wirawan; Suryani, T.; Endroyono. Nonlinear Distortion Cancellation using Predistorter in MIMO-GFDM Systems. Electronics 2019, 8, 620. [Google Scholar] [CrossRef]
- Hausmair, K.; Landin, P.N.; Gustavsson, U.; Fager, C.; Eriksson, T. Digital Predistortion for Multi-Antenna Transmitters Affected by Antenna Crosstalk. IEEE Trans. Microw. Theory Tech. 2018, 66, 1524–1535. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Yao, J. Rapid Linear Frequency Swept Frequency-Modulated Continuous Wave Laser Source Using Iterative Pre-Distortion Algorithm. Remote Sens. 2022, 14, 3455. [Google Scholar] [CrossRef]
- Wu, Q.; Jing, J.; Zhu, X.W.; Yu, C. Digital Predistortion for Concurrent Dual-band Millimeter Wave Analog Multibeam Transmitters. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 1747–1751. [Google Scholar] [CrossRef]
- Ng, E.; Beltagy, Y.; Scarlato, G.; Ben Ayed, A.; Mitran, P.; Boumaiza, S. Digital Predistortion of Millimeter-Wave RF Beamforming Arrays Using Low Number of Steering Angle-Dependent Coefficient Sets. IEEE Trans. Microw. Theory Tech. 2019, 67, 4479–4492. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W.; Chen, L.; Ghannouchi, F.M.; Feng, Z. Power Scalable Beam-Oriented Digital Predistortion for Compact Hybrid Massive MIMO Transmitters. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4994–5006. [Google Scholar] [CrossRef]
- Yu, C.; Jing, J.; Shao, H.; Jiang, Z.H.; Yan, P.; Zhu, X.W.; Hong, W.; Zhu, A. Full-Angle Digital Predistortion of 5G Millimeter-Wave Massive MIMO Transmitters. IEEE Trans. Microw. Theory Tech. 2019, 67, 2847–2860. [Google Scholar] [CrossRef]
- Khan, T.A.; Afshang, M. A Stochastic Geometry Approach to Doppler Characterization in a LEO Satellite Network. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Hou, Y.; Xiong, H.; Xiang, H.; Ma, B.; Xiong, J. Simulation Analysis of Multipath Fading Channel Characteristics in Satellite Communication System. In Proceedings of the 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 11–13 October 2019; pp. 1367–1370. [Google Scholar] [CrossRef]
- Liu, T.; Sun, B.; Li, Z.; Dou, Z. Analysis of channel characteristics and channel model for satellite communication system. In Proceedings of the 2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT), Harbin, China, 20–22 August 2016; pp. 166–169. [Google Scholar] [CrossRef]
- CCSDS. 401.0-B-29, Radio Frequency and Modulation Systems—Part 1 Earth Stations and Spacecraft; CCSDS: Washington, DC, USA, 2019. [Google Scholar]
- Jiang, W.; Yang, X.; Tong, F.; Yang, Y.; Zhou, T. A Low-Complexity Underwater Acoustic Coherent Communication System for Small AUV. Remote Sens. 2022, 14, 3405. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Zhang, Y.; Xiong, W.; Huang, Y.; Wang, Z. Fast tracking Doppler compensation for OFDM-based LEO Satellite data transmission. In Proceedings of the 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 14–16 October 2016; pp. 1814–1817. [Google Scholar] [CrossRef]
- Khan, M.B.; Hussain, A.; Anjum, U.; Babar Ali, C.; Yang, X. Adaptive Doppler Compensation for Mitigating Range Dependence in Forward-Looking Airborne Radar. Electronics 2020, 9, 1896. [Google Scholar] [CrossRef]
- Ming, L.; Lin, Z.; Yide, Z. A novel Doppler frequency shift compensation algorithm for OFDM underwater acoustic communication system. In Proceedings of the 2013 25th Chinese Control and Decision Conference (CCDC), Guiyang, China, 25–27 May 2013; pp. 1571–1575. [Google Scholar] [CrossRef]
- Zhang, X.; Ying, W.; Yang, P.; Sun, M. Parameter estimation of underwater impulsive noise with the Class B model. IET Radar Sonar Navig. 2020, 14, 1055–1060. [Google Scholar] [CrossRef]
- Mahmood, A.; Chitre, M. Modeling colored impulsive noise by Markov chains and alpha-stable processes. In Proceedings of the OCEANS 2015-Genova, Genova, Italy, 18–21 May 2015; pp. 1–7. [Google Scholar]
- Wei, G.f.; Jian, T.; Qiu, R.j. Signal denoising via median filter & wavelet shrinkage based on heavy-tailed modeling. In Proceedings of the 2006 8th International Conference on Signal Processing, IEEE, Guilin, China, 16–20 November 2006; Volume 1. [Google Scholar]
- Hamza, A.B.; Krim, H. Nonlinear image filtering in a mixture of Gaussian and heavy-tailed noise. In Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No. 01TH8563), IEEE, Singapore, 6–8 August 2001; pp. 90–93. [Google Scholar]
- Vishwakarma, D.; Kapoor, R.; Dhiman, A.; Goyal, A.; Jamil, D. De-noising of Audio Signal using Heavy Tailed Distribution and comparison of wavelets and thresholding techniques. In Proceedings of the 2015 2nd International Conference on Computing for Sustainable Global Development (Indiacom), IEEE, New Delhi, India, 11–13 March 2015; pp. 755–760. [Google Scholar]
- Ding, L.; Zhou, G.; Morgan, D.; Ma, Z.; Kenney, J.; Kim, J.; Giardina, C. A robust digital baseband predistorter constructed using memory polynomials. IEEE Trans. Commun. 2004, 52, 159–165. [Google Scholar] [CrossRef]
- Wertz, P.; Hespeler, B.; Kiessling, M.; Hagmanns, F.J. Next generation high data rate downlink subsystems based on a flexible APSK modulator applying SCCC encoding. In Proceedings of the 2016 International Workshop on Tracking, Telemetry and Command Systems for Space Applications (TTC), Noordwijk, The Netherlands, 13–16 September 2016; pp. 1–7. [Google Scholar]
- Schetzen, M. Theory of pth-order inverses of nonlinear systems. IEEE Trans. Circuits Syst. 1976, 23, 285–291. [Google Scholar] [CrossRef]
- Schetzen, M. The Volterra and Wiener Theories of Nonlinear Systems; John Wiley & Sons: Hoboken, NJ, USA, 1980; pp. 199–208. [Google Scholar]
- Liu, H.y.; Wang, Y.y. Adaptive predistorter based oninverse saleh function and saleh model. In Proceedings of the 2010 2nd International Conference on Advanced Computer Control, Shenyang, China, 27–29 March 2010; Volume 2, pp. 151–154. [Google Scholar] [CrossRef]
- Crespo-Cadenas, C.; Madero-Ayora, M.J.; Becerra, J.A. A bivariate Volterra series approach to modeling and linearization of power amplifiers. In Proceedings of the 2021 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), Virtual Conference, 17–22 January 2021; pp. 4–7. [Google Scholar] [CrossRef]
- Morgan, D.; Ma, Z.; Kim, J.; Zierdt, M.; Pastalan, J. A Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers. IEEE Trans. Signal Process. 2006, 54, 3852–3860. [Google Scholar] [CrossRef]
- Abd-Elrady, E. Digital predistortion of wiener systems using the nonlinear filtered-x PEM algorithm with initial subsystem estimates. In Proceedings of the 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, United Arab Emirates, 16–19 October 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W.; Feng, Z. Broadband Digital Predistortion Utilizing Parallel Quasi- Wiener-Hammerstein Model with Extended Dynamic Range. In Proceedings of the 2021 IEEE MTT-S International Wireless Symposium (IWS), Harbin, China, 12–15 August 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Louliej, A.; Jabrane, Y.; Jiménez, V.P.G.; Guilloud, F. Dimensioning an FPGA for Real-Time Implementation of State of the Art Neural Network-Based HPA Predistorter. Electronics 2021, 10, 1538. [Google Scholar] [CrossRef]
- Li, J.; Lim, C.; Nirmalathas, A. Indoor Optical Wireless Communications using Few-mode Based Uniform Beam Shaping and LMS Based Adaptive Equalization. In Proceedings of the 2020 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 28 September–1 October 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Zeeshan, M.; Khan, M.W. Adaptive equalization in hybrid DS-TH CDMA system using State-Space RLS with Adaptive Memory. In Proceedings of the 2017 IEEE 2nd International Conference on Opto-Electronic Information Processing (ICOIP), Singapore, 7–9 July 2017; pp. 11–15. [Google Scholar] [CrossRef]
- Abdelhafiz, A.; Behjat, L.; Ghannouchi, F.M. Generalized Memory Polynomial Model Dimension Selection Using Particle Swarm Optimization. IEEE Microw. Wirel. Components Lett. 2018, 28, 96–98. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.; Jalili, F.; Wang, Z.; Huang, Y.; Wang, Y.; Liu, Y.; Pedersen, G.F.; Shen, M. Robust Digital Signal Recovery for LEO Satellite Communications Subject to High SNR Variation and Transmitter Memory Effects. IEEE Access 2021, 9, 135803–135815. [Google Scholar] [CrossRef]
Power Level | : −25 dBm | : −24 dBm | ||
---|---|---|---|---|
Scheme | ACPR (dBc) Lower & Upper | EVM | ACPR (dBc) Lower & Upper | EVM |
Original signal (APA input) | −45.48/−45.93 | – | −45.48/−45.93 | – |
Original signal (APA output) | −34.77/−32.81 | 11.26% | −33.36/−31.58 | 12.18% |
w/Ideal DPD (GMP) | −36.50/−36.56 | 4.11% | −36.42/−36.36 | 4.46% |
w/JSG-DPD (GMP STS1000) | −36.43/−36.20 | 4.33% | −36.55/−36.23 | 4.67% |
w/JSG-DPD (GMP STS100) | −36.12/−35.44 | 4.73% | −35.71/−35.63 | 4.84% |
w/JSG-DPD (GMP STS10) | −35.10/−34.34 | 4.95% | −34.46/−35.06 | 5.84% |
w/JSG-DPD (GMP w/o STS) | −30.68/−32.14 | 10.68% | −30.14/−32.99 | 10.51% |
w/Ideal DPD (MP) | −35.00/−34.95 | 4.83% | −36.96/−35.19 | 4.65% |
w/JSG-DPD (MP STS1000) | −34.80/−34.38 | 4.56% | −36.85/−35.23 | 4.88% |
w/JSG-DPD (MP STS100) | −34.63/−33.35 | 5.44% | −36.22/−35.64 | 5.13% |
w/JSG-DPD (MP STS10) | −35.27/−33.08 | 5.80% | −35.63/−35.83 | 6.22% |
w/JSG-DPD (MP w/o STS) | −35.85/−35.24 | 10.31% | −34.52/−35.27 | 11.44% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Wang, Z.; Pedersen, G.F.; Shen, M. Joint Satellite-Transmitter and Ground-Receiver Digital Pre-Distortion for Active Phased Arrays in LEO Satellite Communications. Remote Sens. 2022, 14, 4319. https://doi.org/10.3390/rs14174319
Chen Q, Wang Z, Pedersen GF, Shen M. Joint Satellite-Transmitter and Ground-Receiver Digital Pre-Distortion for Active Phased Arrays in LEO Satellite Communications. Remote Sensing. 2022; 14(17):4319. https://doi.org/10.3390/rs14174319
Chicago/Turabian StyleChen, Qingyue, Zhugang Wang, Gert Frølund Pedersen, and Ming Shen. 2022. "Joint Satellite-Transmitter and Ground-Receiver Digital Pre-Distortion for Active Phased Arrays in LEO Satellite Communications" Remote Sensing 14, no. 17: 4319. https://doi.org/10.3390/rs14174319
APA StyleChen, Q., Wang, Z., Pedersen, G. F., & Shen, M. (2022). Joint Satellite-Transmitter and Ground-Receiver Digital Pre-Distortion for Active Phased Arrays in LEO Satellite Communications. Remote Sensing, 14(17), 4319. https://doi.org/10.3390/rs14174319