Reduction of Species Identification Errors in Surveys of Marine Wildlife Abundance Utilising Unoccupied Aerial Vehicles (UAVs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Curation
2.3. Data Analysis
2.3.1. Reviewer and Image Attributes Effects
2.3.2. Majority-Based Identification
2.3.3. Confusion Matrix
2.3.4. Multiple-Reviewer Frameworks
3. Results
3.1. Reviewer-Related Variables and Image Attributes
3.2. Majority-Based Identification
3.3. Confusion Matrix
3.4. Multiple-Reviewer Frameworks
4. Discussion
4.1. Data Collection
4.2. Data Processing
4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burnham, K.P.; Anderson, D.R.; Laake, J.L. Estimation of Density from Line Transect Sampling of Biological Populations. Wildl. Monogr. 1980, 72, 3–202. [Google Scholar]
- Hodgson, A.; Kelly, N.; Peel, D. Unmanned Aerial Vehicles (UAVs) for Surveying Marine Fauna: A Dugong Case Study. PLoS ONE 2013, 8, e79556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, K.; Gaston, K.J. Lightweight Unmanned Aerial Vehicles Will Revolutionize Spatial Ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Chabot, D.; Bird, D.M. Wildlife Research and Management Methods in the 21st Century: Where Do Unmanned Aircraft Fit in? J. Unmanned Veh. Syst. 2015, 3, 137–155. [Google Scholar] [CrossRef] [Green Version]
- Christie, K.S.; Gilbert, S.L.; Brown, C.L.; Hatfield, M.; Hanson, L. Unmanned Aircraft Systems in Wildlife Research: Current and Future Applications of a Transformative Technology. Front. Ecol. Environ. 2016, 14, 241–251. [Google Scholar] [CrossRef]
- Colefax, A.P.; Butcher, P.A.; Kelaher, B.P. The Potential for Unmanned Aerial Vehicles (UAVs) to Conduct Marine Fauna Surveys in Place of Manned Aircraft. ICES J. Mar. Sci. 2018, 75, 1–8. [Google Scholar] [CrossRef]
- Vermeulen, C.; Lejeune, P.; Lisein, J.; Sawadogo, P.; Bouché, P. Unmanned Aerial Survey of Elephants. PLoS ONE 2013, 8, e54700. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, J.C.; Baylis, S.M.; Mott, R.; Herrod, A.; Clarke, R.H. Precision Wildlife Monitoring Using Unmanned Aerial Vehicles. Sci. Rep. 2016, 6, 22574. [Google Scholar] [CrossRef] [Green Version]
- Kiszka, J.J.; Mourier, J.; Gastrich, K.; Heithaus, M.R. Using Unmanned Aerial Vehicles (UAVs) to Investigate Shark and Ray Densities in a Shallow Coral Lagoon. Mar. Ecol. Prog. Ser. 2016, 560, 237–242. [Google Scholar] [CrossRef]
- Hodgson, A.; Peel, D.; Kelly, N. Unmanned Aerial Vehicles for Surveying Marine Fauna: Assessing Detection Probability. Ecol. Appl. 2017, 27, 1253–1267. [Google Scholar] [CrossRef]
- Sykora-Bodie, S.T.; Bezy, V.; Johnston, D.W.; Newton, E.; Lohmann, K.J. Quantifying Nearshore Sea Turtle Densities: Applications of Unmanned Aerial Systems for Population Assessments. Sci. Rep. 2017, 7, 17690. [Google Scholar] [CrossRef] [PubMed]
- Raoult, V.; Gaston, T.F. Rapid Biomass and Size-Frequency Estimates of Edible Jellyfish Populations Using Drones. Fish. Res. 2018, 207, 160–164. [Google Scholar] [CrossRef]
- Cleguer, C.; Kelly, N.; Tyne, J.; Wieser, M.; Peel, D.; Hodgson, A. A Novel Method for Using Small Unoccupied Aerial Vehicles to Survey Wildlife Species and Model Their Density Distribution. Front. Mar. Sci. 2021, 8, 1–17. [Google Scholar] [CrossRef]
- Brack, I.V.; Kindel, A.; Oliveira, L.F.B. Detection Errors in Wildlife Abundance Estimates from Unmanned Aerial Systems (UAS) Surveys: Synthesis, Solutions, and Challenges. Methods Ecol. Evol. 2018, 9, 1864–1873. [Google Scholar] [CrossRef]
- Linchant, J.; Lisein, J.; Semeki, J.; Lejeune, P.; Vermeulen, C. Are Unmanned Aircraft Systems (UASs) the Future of Wildlife Monitoring? A Review of Accomplishments and Challenges. Mamm. Rev. 2015, 45, 239–252. [Google Scholar] [CrossRef]
- Baxter, P.W.J.; Hamilton, G. Learning to Fly: Integrating Spatial Ecology with Unmanned Aerial Vehicle Surveys. Ecosphere 2018, 9, e02194. [Google Scholar] [CrossRef]
- Marsh, H.; Sinclair, D.F. Correcting for Visibility Bias in Strip Transect Aerial Surveys of Aquatic Fauna. J. Wildl. Manag. 1989, 53, 1017–1024. [Google Scholar] [CrossRef]
- Hagihara, R.; Jones, R.E.; Sobtzick, S.; Cleguer, C.; Garrigue, C.; Marsh, H. Compensating for Geographic Variation in Detection Probability with Water Depth Improves Abundance Estimates of Coastal Marine Megafauna. PLoS ONE 2018, 13, e0191476. [Google Scholar] [CrossRef] [Green Version]
- Pollock, K.H.; Marsh, H.D.; Lawler, I.R.; Alldredge, M.W. Estimating Animal Abundance in Heterogeneous Environments: An Application to Aerial Surveys for Dugongs. J. Wildl. Manag. 2006, 70, 255–262. [Google Scholar] [CrossRef]
- Miller, D.A.; Nichols, J.D.; McClintock, B.T.; Campbell Grant, E.H.; Bailey, L.L.; Weir, L.A. Improving Occupancy Estimation When Two Types of Observational Error Occur: Non-Detection and Species Misidentification. Ecology 2011, 92, 1422–1428. [Google Scholar] [CrossRef]
- Conn, P.B.; McClintock, B.T.; Cameron, M.F.; Johnson, D.S.; Moreland, E.E.; Boveng, P.L. Accommodating Species Identification Errors in Transect Surveys. Ecology 2013, 94, 2607–2618. [Google Scholar] [CrossRef] [PubMed]
- Dénes, F.V.; Silveira, L.F.; Beissinger, S.R. Estimating Abundance of Unmarked Animal Populations: Accounting for Imperfect Detection and Other Sources of Zero Inflation. Methods Ecol. Evol. 2015, 6, 543–556. [Google Scholar] [CrossRef]
- Simons, T.R.; Alldredge, M.W.; Pollock, K.H.; Wettroth, J.M. Experimental Analysis of the Auditory Detection Process on Avian Point Counts. Auk 2007, 124, 986–999. [Google Scholar] [CrossRef]
- Royle, J.A.; Link, W.A. Generalized Site Occupancy Models Allowing for False Positive and False Negative Errors. Ecology 2006, 87, 835–841. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.A.W.; Nichols, J.D.; Gude, J.A.; Rich, L.N.; Podruzny, K.M.; Hines, J.E.; Mitchell, M.S. Determining Occurrence Dynamics When False Positives Occur: Estimating the Range Dynamics of Wolves from Public Survey Data. PLoS ONE 2013, 8, e65808. [Google Scholar] [CrossRef] [Green Version]
- Chambert, T.; Campbell Grant, E.H.; Miller, D.A.W.; Nichols, J.D.; Mulder, K.P.; Brand, A.B. Two-Species Occupancy Modelling Accounting for Species Misidentification and Non-Detection. Methods Ecol. Evol. 2018, 9, 1468–1477. [Google Scholar] [CrossRef]
- McClintock, B.T.; Bailey, L.L.; Pollock, K.H.; Simons, T.R. Experimental Investigation of Observation Error in Anuran Call Surveys. J. Wildl. Manag. 2010, 74, 1882–1893. [Google Scholar] [CrossRef]
- McClintock, B.T.; Bailey, L.L.; Pollock, K.H.; Simons, T.R. Unmodeled Observation Error Induces Bias When Inferring Patterns and Dynamics of Species Occurrence via Aural Detections. Ecology 2010, 91, 2446–2454. [Google Scholar]
- Chambert, T.; Hossack, B.R.; Fishback, L.A.; Davenport, J.M. Estimating Abundance in the Presence of Species Uncertainty. Methods Ecol. Evol. 2016, 7, 1041–1049. [Google Scholar] [CrossRef]
- McClintock, B.T.; Moreland, E.E.; London, J.M.; Dahle, S.P.; Brady, G.M.; Richmond, E.L.; Yano, K.M.; Boveng, P.L. Quantitative Assessment of Species Identification in Aerial Transect Surveys for Ice-Associated Seals. Mar. Mammal Sci. 2015, 31, 1057–1076. [Google Scholar] [CrossRef] [Green Version]
- Chambert, T.; Miller, D.A.W.; Nichols, J.D. Modeling False Positive Detections in Species Occurrence Data under Different Study Designs. Ecology 2015, 96, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.A.W.; Pacifici, K.; Sanderlin, J.S.; Reich, B.J. The Recent Past and Promising Future for Data Integration Methods to Estimate Species’ Distributions. Methods Ecol. Evol. 2019, 10, 22–37. [Google Scholar] [CrossRef] [Green Version]
- Dunshea, G.; Groom, R.; Griffiths, A.D. Observer Performance and the Effect of Ambiguous Taxon Identification for Fixed Strip-Width Dugong Aerial Surveys. J. Exp. Mar. Bio. Ecol. 2020, 526, 151338. [Google Scholar] [CrossRef]
- Miller, D.A.W.; Weir, L.A.; McClintock, B.T.; Campbell Grant, E.H.; Bailey, L.L.; Simons, T.R. Experimental Investigation of False Positive Errors in Auditory Species Occurrence Surveys. Ecol. Appl. 2012, 22, 1665–1674. [Google Scholar] [CrossRef]
- Choy, S.L.; O’Leary, R.; Mengersen, K. Elicitation by Design in Ecology: Using Expert Opinion to Inform Priors for Bayesian Statistical Models. Ecology 2009, 90, 265–277. [Google Scholar] [CrossRef]
- Barnas, A.F.; Chabot, D.; Hodgson, A.J.; Johnston, D.W.; Bird, D.M.; Ellis-Felege, S.N. A Standardized Protocol for Reporting Methods When Using Drones for Wildlife Research. J. Unmanned Veh. Syst. 2020, 8, 89–98. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Therneau, T.; Atkinson, B.; Ripley, B. Rpart: Recursive Partitioning and Regression Trees. 2019. Available online: CRAN.R-project.org/package=rpart (accessed on 14 May 2022).
- Paluszynska, A.; Biecek, P.; Jiang, Y. randomForestExplainer: Explaining and Visualizing Random Forests in Terms of Variable Importance. 2020. Available online: CRAN.R-peoject.org/package=randomForestExplainer (accessed on 14 May 2022).
ID | BSS | GSD 0–1 cm/pixel | GSD 1–2 cm/pixel | GSD 2–3 cm/pixel | Total |
---|---|---|---|---|---|
Dd | 0 | 0 | 0 | 0 | 0 |
1 | 9 | 9 | 2 | 20 | |
2 | 9 | 7 | 6 | 22 | |
Sc | 0 | 0 | 3 | 3 | 6 |
1 | 0 | 3 | 2 | 5 | |
2 | 0 | 0 | 0 | 0 | |
Tt | 0 | 3 | 2 | 0 | 5 |
1 | 7 | 8 | 7 | 22 | |
2 | 6 | 5 | 3 | 14 | |
Total | - | 34 | 37 | 23 | 94 |
Model | Effect of Interest | Response Variable | Explanatory Variables | Random Variables |
---|---|---|---|---|
1 | Null | Rev_ans | None | Img_ID |
2 | Previous experience | Rev_ans | EXP | Img_ID |
3 | Image attributes | Rev_ans | GSD, BSS, ID, NID, EXP | None |
4 | Among-reviewer variation | Rev_ans | GSD, BSS, ID, NID, EXP | REV |
5 | Encounter | Rev_ans | GSD, BSS, ID, NID, EXP | REV, ENC |
6 | Image attributes as predictors of accuracy (all data) | PCS_img | GSD, BSS, ID, NID | None |
7 | Image attributes as predictors of accuracy (high-confidence selections) | PCS_img | GSD, BSS, ID, NID | None |
8 | Image attributes as predictors of certainty | CNF_img | GSD, BSS, ID, NID | None |
Model | Effect of Interest | AIC |
---|---|---|
1 | Null | 1086.13 |
2 | Previous experience | 1084.37 |
3 | Image attributes | 1140.24 |
4 | Among-reviewer variation | 1028.6 |
5 | Among-reviewer variation | 1140.24 |
Observed Species | Dd | Gg | Pp | Sb | Sc | Tt |
---|---|---|---|---|---|---|
Dd | 0.66 | 0 | 0.02 | 0.12 | 0.07 | 0.13 |
Sc | 0.2 | 0.02 | 0.02 | 0.09 | 0.5 | 0.18 |
Tt | 0.04 | 0.07 | 0.07 | 0.08 | 0.08 | 0.65 |
Observed Species | Dd | Gg | Pp | Sb | Sc | Tt |
Dd | 0.83 | 0 | 0 | 0.06 | 0.06 | 0.06 |
Sc | 0.14 | 0 | 0 | 0.05 | 0.78 | 0.04 |
Tt | 0.01 | 0.07 | 0.03 | 0.04 | 0.09 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigal, E.; Galili, O.; van Rijn, I.; Rosso, M.; Cleguer, C.; Hodgson, A.; Scheinin, A.; Tchernov, D. Reduction of Species Identification Errors in Surveys of Marine Wildlife Abundance Utilising Unoccupied Aerial Vehicles (UAVs). Remote Sens. 2022, 14, 4118. https://doi.org/10.3390/rs14164118
Bigal E, Galili O, van Rijn I, Rosso M, Cleguer C, Hodgson A, Scheinin A, Tchernov D. Reduction of Species Identification Errors in Surveys of Marine Wildlife Abundance Utilising Unoccupied Aerial Vehicles (UAVs). Remote Sensing. 2022; 14(16):4118. https://doi.org/10.3390/rs14164118
Chicago/Turabian StyleBigal, Eyal, Ori Galili, Itai van Rijn, Massimiliano Rosso, Christophe Cleguer, Amanda Hodgson, Aviad Scheinin, and Dan Tchernov. 2022. "Reduction of Species Identification Errors in Surveys of Marine Wildlife Abundance Utilising Unoccupied Aerial Vehicles (UAVs)" Remote Sensing 14, no. 16: 4118. https://doi.org/10.3390/rs14164118
APA StyleBigal, E., Galili, O., van Rijn, I., Rosso, M., Cleguer, C., Hodgson, A., Scheinin, A., & Tchernov, D. (2022). Reduction of Species Identification Errors in Surveys of Marine Wildlife Abundance Utilising Unoccupied Aerial Vehicles (UAVs). Remote Sensing, 14(16), 4118. https://doi.org/10.3390/rs14164118