Modelling the Influence of Geological Structures in Paleo Rock Avalanche Failures Using Field and Remote Sensing Data
Abstract
:1. Introduction
2. Study Area Description
2.1. Geological Setting
2.2. The Lettopalena Paleolandslide
3. Materials and Methods
3.1. Interpretation of Geological Structures and Kinematic Analysis
3.2. Numerical Analysis of the Landslide and Sensitivity Study
3.2.1. Landslide Back Numerical Analysis
3.2.2. Sensitivity Analysis
4. Results
4.1. The Characteristics of Geological Structures and Result of Kinematic Analysis
4.1.1. The Characteristics of Geological Structures
4.1.2. Results of Kinematic Analysis
4.2. Landslide Numerical Modelling and Sensitivity Analysis
4.2.1. Landslide Numerical Modelling
- (1)
- Interval 1 (timestep 0–100,000): The three history points all achieve a limited equilibrium state that is characterized by the convergence of X displacement. During this interval, H3 experiences more X displacement than H2/H1.
- (2)
- Interval 2 (timestep 100,000–180,000): During this interval, H1/H2/H3 are stable and experienced a minor increase in X displacement, caused by the debuttressing induced by river erosion. This debuttressing provides a gradually attenuated impact on the slope from H1 to H3, showing that H1 increased X displacement to 0.3 mm.
- (3)
- Interval 3 (timestep 180,000–260,000): Similar to interval 2, H1/H2/H3 remain stable. Additional increases in X displacement of the three history points can be observed. During interval 3, the debuttressing effect is more noticeable than in interval 2, which is reflected by increased X displacement of H1/H2/H3.
- (4)
- Interval 4 (timestep 260,000–340,000): When river erosion advances to stage 3, the displacement of H1/H2 sharply increases, whilst H3 approaches stable convergence. This infers that the daylighting of the bedding plane caused by river erosion in stage 3 creates kinematic freedom for translational sliding of the layered rocks. The contrasting displacement behaviours between H1/H2 and H3 is potentially caused by the folded bedding plane (associated with the anticline) that has an inclination of 20° on the crest of the slope and 25° at the toe of the slope (valley). This is consistent with the interpretation of field observation and that the translational landslide occurred in the lower section of the slope whilst the upper section of the slope remains stable (Figure 3a, Figure 4, and Figure 11).
4.2.2. Sensitivity Analysis
5. Discussion
6. Conclusions
- (1)
- Satellite images can be useful to improve data acquired from engineering geological and photogrammetric surveys.
- (2)
- Lidar data was able to effectively provide information on elevation, slope angle, and aspect from the topography of the post-landslide slope. This also allowed the depiction of the variation in the dip of S0 along the slope.
- (3)
- The point cloud generated by a series of UAV stereo images showed that the formation of a section of landslide escarpment was controlled by the discrete fracture network, where the upper boundary was related to the set J1, and the left boundary was related to sets J2/J3.
- (4)
- UDEC modelling was able to recreate the translational landslide failure mechanism, highlighting the fundamental role of gradual river erosion, which daylighted the bedding planes providing a kinematic release for the landslide to occur.
- (5)
- The modelling suggests that termination of the landslide rear release surface was influenced by the presence of an anticline which provides variation in the inclination of folded bedding planes.
- (6)
- The investigation highlights the important role of the geological and geostructural model in numerical landslide simulations, both in terms of predisposing factors and landslide geometry.
- (7)
- The modelling highlights the influence of step-path failure in the vicinity of the toe of the slope.
- (8)
- The sensitivity analysis emphasises the influence of discontinuity strength properties (i.e., friction angle and cohesion) of the basal slip surface on the extent of potential slope instability.
Author Contributions
Funding
Conflicts of Interest
References
- Geertsema, M.; Clague, J.J.; Schwab, J.W.; Evans, S.G. An overview of recent large catastrophic landslides in northern British Columbia, Canada. Eng. Geol. 2006, 83, 120–143. [Google Scholar] [CrossRef]
- Runqiu, H. Some catastrophic landslides since the twentieth century in the Southwest of China. Landslides 2009, 6, 69–81. [Google Scholar] [CrossRef]
- Singeisen, C.; Ivy-Ochs, S.; Wolter, A.; Steinemann, O.; Akçar, N.; Yesilyurt, S.; Vockenhuber, C. The Kandersteg rock avalanche (Switzerland): Integrated analysis of a late Holocene catastrophic event. Landslides 2020, 17, 1297–1317. [Google Scholar] [CrossRef]
- Chen, X.; Ma, T.; Li, C.; Liu, H.; Ding, B.; Peng, W. The catastrophic 13 November 2015 rock-debris slide in Lidong, South-western Zhejiang (China): A landslide triggered by a combination of antecedent rainfall and triggering rainfall. Geomat. Nat. Hazards Risk 2018, 9, 608–623. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Li, B.; Gao, H.; Chen, L.; Wang, Y. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area: A case study of the Shuicheng “7.23” landslide in Guizhou, China. Landslides 2020, 17, 1663–1677. [Google Scholar] [CrossRef]
- Zhuang, Y.; Xu, Q.; Xing, A. Numerical investigation of the air blast generated by the Wenjia valley rock avalanche in Mianzhu, Sichuan, China. Landslides 2019, 16, 2499–2508. [Google Scholar] [CrossRef]
- Allen, S.K.; Linsbauer, A.; Randhawa, S.S.; Huggel, C.; Rana, P.; Kumari, A. Glacial lake outburst flood risk in Himachal Pradesh, India: An integrative and anticipatory approach considering current and future threats. Nat. Hazards 2016, 84, 1741–1763. [Google Scholar] [CrossRef] [Green Version]
- Pandey, V.K.; Kumar, R.; Singh, R.; Rai, S.C.; Singh, R.P.; Tripathi, A.K.; Soni, V.K.; Ali, S.N.; Tamang, D.; Latief, S.U. Catastrophic ice-debris flow in the Rishiganga River, Chamoli, Uttarakhand (India). Geomat. Nat. Hazards Risk 2022, 13, 289–309. [Google Scholar] [CrossRef]
- Hutchinson, J.N. Morphological and Geotechnical Parameters of Landslides in Relation to Geology and Hydrogeology. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1989, 26, 88. [Google Scholar] [CrossRef]
- Agliardi, F.; Crosta, G.; Zanchi, A. Structural constraints on deep-seated slope deformation kinematics. Eng. Geol. 2001, 59, 83–102. [Google Scholar] [CrossRef]
- Della Seta, M.; Esposito, C.; Marmoni, G.M.; Martino, S.; Scarascia Mugnozza, G.; Troiani, F. Morpho-structural evolution of the valley-slope systems and related implications on slope-scale gravitational processes: New results from the Mt. Genzana case history (Central Apennines, Italy). Geomorphology 2017, 289, 60–77. [Google Scholar] [CrossRef]
- Bianchi-Fasani, G.; Esposito, C.; Petitta, M.; Scarascia-Mugnozza, G.; Barbieri, M.; Cardarelli, E.; Cercato, M.; Di Filippo, G. The Importance of Geological Models in Understanding and Predicting the Life Span of Rockslide Dams: The Case of Scanno Lake, Central Italy. In Natural and Artificial Rockslide Dams; Evans, S.G., Hermanns, R.L., Strom, A., Scarascia-Mugnozza, G., Eds.; Lecture Notes in Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2011; Volume 133, pp. 323–345. [Google Scholar] [CrossRef]
- Nicoletti, G.; Prestininzi, P.G.; Miccadei, E. The Scanno Rock Avalanche (Abruzzi, South-Central Italy). Boll. Soc. Geol. Ital. 1993, 112, 523–535. [Google Scholar]
- Borrelli, L.; Gullà, G. Tectonic constraints on a deep-seated rock slide in weathered crystalline rocks. Geomorphology 2017, 290, 288–316. [Google Scholar] [CrossRef]
- Arbanas, S.M.; Sečanj, M.; Gazibara, S.B.; Krkač, M.; Begić, H.; Džindo, A.; Zekan, S.; Arbanas, Ž. Landslides in the Dinarides and Pannonian Basin—From the largest historical and recent landslides in Croatia to catastrophic landslides caused by Cyclone Tamara (2014) in Bosnia and Herzegovina. Landslides 2017, 14, 1861–1876. [Google Scholar] [CrossRef]
- Chigira, M.; Tsou, C.-Y.; Matsushi, Y.; Hiraishi, N.; Matsuzawa, M. Topographic precursors and geological structures of deep-seated catastrophic landslides caused by Typhoon Talas. Geomorphology 2013, 201, 479–493. [Google Scholar] [CrossRef]
- Nichol, S.L.; Hungr, O.; Evans, S.G. Large-scale brittle and ductile toppling of rock slopes. Can. Geotech. J. 2002, 39, 773–788. [Google Scholar] [CrossRef]
- Donati, D.; Stead, D.; Brideau, M.-A.; Ghirotti, M. Using pre-failure and post-failure remote sensing data to constrain the three-dimensional numerical model of a large rock slope failure. Landslides 2020, 18, 827–847. [Google Scholar] [CrossRef]
- Fan, W.; Lv, J.; Cao, Y.; Shen, M.; Deng, L.; Wei, Y. Characteristics and block kinematics of a fault-related landslide in the Qinba Mountains, Western China. Eng. Geol. 2019, 249, 162–171. [Google Scholar] [CrossRef]
- Goodman, R.E. Introduction to Rock Mechanics; John & Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Hoek, E.; Bray, J.W. Rock Slope Engineering, 3rd ed.; The Institute of Mining and Metallurgy: London, UK, 1981. [Google Scholar]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.-H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.; Saroglou, C.; Wu, F.; Sha, P.; Li, B. Development and application of UAV-SfM photogrammetry for quantitative characterization of rock mass discontinuities. Int. J. Rock Mech. Min. Sci. 2021, 141, 104729. [Google Scholar] [CrossRef]
- Martino, S.; Mazzanti, P. Integrating geomechanical surveys and remote sensing for sea cliff slope stability analysis: The Mt. Pucci case study (Italy). Nat. Hazards Earth Syst. Sci. 2014, 14, 831–848. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Verma, A.K.; Sardana, S.; Sarkar, K.; Singh, T.N. Comparative analysis of limit equilibrium and numerical methods for prediction of a landslide. Bull. Eng. Geol. Environ. 2017, 77, 595–608. [Google Scholar] [CrossRef]
- Stead, D.; Wolter, A. A critical review of rock slope failure mechanisms: The importance of structural geology. J. Struct. Geol. 2015, 74, 1–23. [Google Scholar] [CrossRef]
- Kawamoto, T.; Aydan, Ö. A Review of Numerical Analysis of Tunnels in Discontinuous Rock Masses. Int. J. Numer. Anal. Meth. Geomech. 1999, 23, 1377–1391. [Google Scholar] [CrossRef]
- He, L.; Coggan, J.; Stead, D.; Francioni, M.; Eyre, M. Modelling discontinuity control on the development of Hell’s Mouth landslide. Landslides 2021, 19, 277–295. [Google Scholar] [CrossRef]
- Bao, Y.; Zhai, S.; Chen, J.; Xu, P.; Sun, X.; Zhan, J.; Zhang, W.; Zhou, X. The evolution of the Samaoding paleolandslide river blocking event at the upstream reaches of the Jinsha River, Tibetan Plateau. Geomorphology 2020, 351, 106970. [Google Scholar] [CrossRef]
- Mao, J.; Liu, X.; Zhang, C.; Jia, G.; Zhao, L. Runout prediction and deposit characteristics investigation by the distance potential-based discrete element method: The 2018 Baige landslides, Jinsha River, China. Landslides 2020, 18, 235–249. [Google Scholar] [CrossRef]
- Francioni, M.; Calamita, F.; Coggan, J.; De Nardis, A.; Eyre, M.; Miccadei, E.; Piacentini, T.; Stead, D.; Sciarra, N. A Multi-Disciplinary Approach to the Study of Large Rock Avalanches Combining Remote Sensing, GIS and Field Surveys: The Case of the Scanno Landslide, Italy. Remote Sens. 2019, 11, 1570. [Google Scholar] [CrossRef] [Green Version]
- Mugnozza, G.S.; Bianchi-Fasani, G.; Esposito, C.; Martino, S.; Saroli, M.; DI Luzio, E.; Evans, S.G. Rock Avalanche and Mountain Slope Deformation in a Convex Dip-Slope: The Case of The Maiella Massif, Central Italy. In Landslides from Massive Rock Slope Failure; Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R.L., Eds.; NATO Science Series; Springer Netherlands: Dordrecht, The Netherlands, 2006; Volume 49, pp. 357–376. [Google Scholar] [CrossRef]
- Bianchi-Fasani, G.; Esposito, C.; Scarascia-Mugnozza, G.; Stedile, L. La frana di Taranta Peligna (Chieti) del 20 Aprile 2005: Un altro caso di morte annunciata per frana. G. Geol. Appl. 2005, 2, 20–26. [Google Scholar] [CrossRef]
- Fasani, G.B.; DI Luzio, E.; Esposito, C.; Martino, S.; Scarascia-Mugnozza, G. Numerical modelling of Plio-Quaternary slope evolution based on geological constraints: A case study from the Caramanico Valley (Central Apennines, Italy). Geol. Soc. Lond. 2011, 351, 201–214. [Google Scholar] [CrossRef]
- Paolucci, G.; Pizzi, R.; Scarascia Mugnozza, G. Analisi Preliminare Della Frana Di Lettopalena (Abruzzo). Mem. Soc. Geol. It. 2001, 56, 131–137. [Google Scholar]
- Vecsei, A.; Sanders, D.G.K.; Bernoulli, D.; Eberli, G.P.; Pignatti, J.S. Cretaceous to Miocene Sequence Stratigraphy and Evolution of the Maiella Carbonate Platform Margin, Italy. In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins; SEPM Society for Sedimentary Geology: Oklahoma, OK, USA, 1999. [Google Scholar] [CrossRef]
- Aydin, A.; Antonellini, M.; Tondi, E.; Agosta, F. Deformation along the leading edge of the Maiella thrust sheet in central Italy. J. Struct. Geol. 2010, 32, 1291–1304. [Google Scholar] [CrossRef]
- Brandano, M.; Cornacchia, I.; Raffi, I.; Tomassetti, L. The Oligocene–Miocene stratigraphic evolution of the Majella carbonate platform (Central Apennines, Italy). Sediment. Geol. 2016, 333, 1–14. [Google Scholar] [CrossRef]
- Mutti, M.; Bernoulli, D.; Stille, P. Temperate carbonate platform drowning linked to Miocene oceanographic events: Maiella platform margin, Italy. Terra Nova 1997, 9, 122–125. [Google Scholar] [CrossRef]
- Festa, A.; Accotto, C.; Coscarelli, F.; Malerba, E.; Palazzin, G. Geology of the Aventino River Valley (Eastern Majella, Central Italy). J. Maps 2014, 10, 584–599. [Google Scholar] [CrossRef] [Green Version]
- Vezzani, L.; Ghisetti, F. Carta Geologica Dell’Abruzzo; S.EL.CA.: Firenze, Italy, 1998. [Google Scholar]
- Miccadei, E.; Piacentini, T.; Pozzo, A.D.; La Corte, M.; Sciarra, M. Morphotectonic map of the Aventino-Lower Sangro valley (Abruzzo, Italy), scale 1:50,000. J. Maps 2013, 9, 390–409. [Google Scholar] [CrossRef] [Green Version]
- Pellet, F.; Keshavarz, M.; Boulon, M. Influence of humidity conditions on shear strength of clay rock discontinuities. Eng. Geol. 2013, 157, 33–38. [Google Scholar] [CrossRef]
- Noël, C.; Baud, P.; Violay, M. Effect of water on sandstone’s fracture toughness and frictional parameters: Brittle strength constraints. Int. J. Rock Mech. Min. Sci. 2021, 147, 104916. [Google Scholar] [CrossRef]
- Agisoft LLC. Metashape, version: 1.7.0; Agisoft LLC.: Saint Petersburg City, Russian, 2016; Available online: https://www.agisoft.com/ (accessed on 1 June 2021).
- Thiele, S.T.; Grose, L.; Samsu, A.; Micklethwaite, S.; Vollgger, S.A.; Cruden, A.R. Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data. Solid Earth 2017, 8, 1241–1253. [Google Scholar] [CrossRef] [Green Version]
- Girardeau-Montaut, D. CloudCompare: 3D Point Cloud and Mesh Processing Software, Version 2.12. 2017. Available online: https://www.danielgm.net/cc/ (accessed on 3 May 2022).
- Itasca Consulting Group Inc. UDEC (Universal Distinct Element Code); Version: 6.0; Itasca Consulting Group Inc.: Minneapolis, MN, USA, 2011; Available online: https://www.itascacg.com/software/UDEC (accessed on 3 May 2022).
- Lama, R.D.; Vutukuri, V.S. Handbook on Mechanical Properties of Rocks—Testing Techniques and Results; Series on rock and soil mechanics; Trans Tech Publications: Clausthal, Germany, 1978. [Google Scholar]
- Antolini, F.; Barla, M.; Gigli, G.; Giorgetti, A.; Intrieri, E.; Casagli, N. Combined Finite-Discrete Numerical Modeling of Runout of the Torgiovannetto di Assisi Rockslide in Central Italy. Int. J. Géoméch. 2016, 16, 04016019. [Google Scholar] [CrossRef] [Green Version]
- Patacca, E.; Scandone, P.; DI Luzio, E.; Cavinato, G.; Parotto, M. Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide. Tectonics 2008, 27, TC3006. [Google Scholar] [CrossRef]
- Cui, S.; Pei, X.; Huang, R. Effects of geological and tectonic characteristics on the earthquake-triggered Daguangbao landslide, China. Landslides 2017, 15, 649–667. [Google Scholar] [CrossRef]
- Nilforoushan, A.; Khamehchiyan, M.; Nikudel, M.R. Investigation of the probable trigger factor for large landslides in north of Dehdasht, Iran. Nat. Hazards 2020, 105, 1891–1921. [Google Scholar] [CrossRef]
Formation | Lithology | Thickness | |
---|---|---|---|
MAJ | Yellowish pelite with decimetres-to-metres thick intercalations of sandstone | ˃900 m | |
GES | Gypsum and gypsumarenite deposits intercalated in alternating grayish marl and siltstone | 30–100 m | |
BOL | BOL1 | Marly limestone and cherty limestone | 0–20 m |
BOL2 | Bryozoan-rich calcarenite | 0–70 m | |
BOL3 | Massive-bedded whitish limestone with rodolites of coralline algae, bryozoan, echinoids, molluscs, macroforaminifera | 30–60 m | |
FSS | FSS1 | Whitish calcilutite with chert alternating with calciturbidites | 20–50 m |
FSS2 | Whitish-to yellowish porous calcarenite with chert | 100–300 m | |
OR | Biocalcarenite and whitish porous calcirudite | 60–200 m | |
SCZ | White hemipelagic calcilutite, in decimetres thick beds, with red-to violet chert, alternating with porous bioclastic calcisiltite and calcarenite | 50–400 m | |
ACQ | White fine-grained biocalcarenite and calcirudite rich in Rudists | 200–300 m | |
MOR | Massive micritic limestone and oolitic and oncolitic calcarenite | ˃400 m |
Density | Shear Modulus | Bulk Modulus | Friction Angle | Cohesion | Tensile Strength |
---|---|---|---|---|---|
2750 kg/m3 | 30 GPa | 50 GPa | 40° | 8 MPa | 2.5 MPa |
Normal Stiffness | Shear Stiffness | Friction Angle | Cohesion |
---|---|---|---|
10 (GPa/m) | 5 (GPa/m) | 22 (°) | 25 (KPa) |
J1 Property | Mean Value | Minimum | Maximum |
---|---|---|---|
Friction angle (°) | 22 | 17 | 27 |
Cohesion (Pa) | 2.5 × 104 | 0 | 5 × 104 |
Set | Mean Orientation (Dip°/Dip Direction°) | Mean Spacing (m) | Mean Persistence (m) | Mean Infilling (mm) | ||
---|---|---|---|---|---|---|
From Traditional Manual Survey | From 3D Model | Combined | ||||
S0 | 36/105 | 33/93 | 35/99 | 0.4 | >20 | Hard filling < 5 |
J1 | 84/341 | 74/356 | 80/348 | 0.3 | 1–3 | Hard filling < 5 |
J2 | 83/257 | 78/255 | 81/257 | 0.4 | 1–3 | Hard filling < 5 |
J3 | 80/230 | (Nah) | 80/230 | 0.4 | 1–3 | Hard filling < 5 |
Set | JCS (MPa) | Weathering | JRC |
---|---|---|---|
S0 | 50/32/48/44 | moderately/slightly/moderately/moderately | 3/7/3/1 |
J1 | 44/30/50/48 | moderately/slightly/moderately/moderately | 3/7/3/3 |
J2 | 50/30/44/50 | moderately/slightly/moderately/moderately | 3/9/5/3 |
J3 | 48/30/(Nah)/50 | moderately/slightly/(Nah)/moderately | 3/9/(Nah)/3 |
Slope Angle | 40° | 50° | 60° |
---|---|---|---|
Probability for all joints | 10.19% | 14.01% | 14.01% |
Probability for S0 | 59.26% | 81.48% | 81.48% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Francioni, M.; Coggan, J.; Calamita, F.; Eyre, M. Modelling the Influence of Geological Structures in Paleo Rock Avalanche Failures Using Field and Remote Sensing Data. Remote Sens. 2022, 14, 4090. https://doi.org/10.3390/rs14164090
He L, Francioni M, Coggan J, Calamita F, Eyre M. Modelling the Influence of Geological Structures in Paleo Rock Avalanche Failures Using Field and Remote Sensing Data. Remote Sensing. 2022; 14(16):4090. https://doi.org/10.3390/rs14164090
Chicago/Turabian StyleHe, Lingfeng, Mirko Francioni, John Coggan, Fernando Calamita, and Matthew Eyre. 2022. "Modelling the Influence of Geological Structures in Paleo Rock Avalanche Failures Using Field and Remote Sensing Data" Remote Sensing 14, no. 16: 4090. https://doi.org/10.3390/rs14164090
APA StyleHe, L., Francioni, M., Coggan, J., Calamita, F., & Eyre, M. (2022). Modelling the Influence of Geological Structures in Paleo Rock Avalanche Failures Using Field and Remote Sensing Data. Remote Sensing, 14(16), 4090. https://doi.org/10.3390/rs14164090