Assessing Surface Urban Heat Island Related to Land Use/Land Cover Composition and Pattern in the Temperate Mountain Valley City of Kathmandu, Nepal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. LULC Classifications
2.3. Estimation of LST
2.4. Spatial Profile of Surface UHI in Kathmandu City
2.5. Remote Sensing-Related Parameter Analysis
2.6. Spatial Analysis
2.6.1. Characteristics in Surface UHI of Kathmandu
2.6.2. Landscape Composition and Pattern Analysis
3. Results
3.1. LULC and LST Changes in Kathmandu from 2000 to 2020
3.2. Characteristics of RS-Based Spatial Parameters
3.2.1. Changes in NDVI, MNDWI, and NDBal
3.2.2. Relationship between Mean LST and RS-Based Parameters
3.3. Characteristics of Surface UHI in Kathamndu
3.4. LULC Composition and Pattern vs. Mean LST in Kathmandu
4. Discussion
4.1. Change in Urban Structure in Kathmandu
4.2. Linking Surface SUHI Formation with LULC
4.3. Effect of Landscape Composition and Pattern on Surface UHI Formation
4.4. Implication for Surface UHI Mitigation and Urban Climate Adaptation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
LULC Category | Reference Data | Total | User’s Accuracy (%) | |||||
---|---|---|---|---|---|---|---|---|
IS | GS 1 | GS 2 | BL | W | OL | |||
2000 | ||||||||
IS | 98 | 1 | 4 | 5 | 1 | 2 | 111 | 88.29 |
GS 1 | 3 | 96 | 3 | 1 | 4 | 6 | 113 | 84.96 |
GS 2 | 1 | 6 | 89 | 2 | 1 | 2 | 101 | 88.12 |
BL | 3 | 0 | 3 | 79 | 0 | 1 | 86 | 91.86 |
W | 1 | 3 | 2 | 2 | 81 | 1 | 90 | 90.00 |
OL | 1 | 4 | 1 | 4 | 5 | 84 | 99 | 84.85 |
Total | 107 | 110 | 102 | 93 | 92 | 96 | 600 | |
Producer’s accuracy (%) | 91.59 | 87.27 | 87.25 | 84.95 | 88.04 | 87.50 | ||
Overall accuracy (%) = 87.83 | ||||||||
2013 | ||||||||
IS | 103 | 2 | 3 | 4 | 3 | 1 | 116 | 88.79 |
GS 1 | 2 | 79 | 2 | 3 | 3 | 6 | 95 | 83.16 |
GS 2 | 3 | 3 | 98 | 5 | 5 | 2 | 116 | 84.48 |
BL | 3 | 2 | 1 | 84 | 2 | 5 | 97 | 86.60 |
W | 1 | 1 | 4 | 3 | 72 | 4 | 85 | 84.71 |
OL | 4 | 3 | 3 | 2 | 3 | 76 | 91 | 83.52 |
Total | 116 | 90 | 111 | 101 | 88 | 94 | 600 | |
Producer’s accuracy (%) | 88.79 | 87.78 | 88.29 | 83.17 | 81.82 | 80.85 | ||
Overall accuracy (%) = 85.33 | ||||||||
2020 | ||||||||
IS | 93 | 4 | 2 | 5 | 1 | 3 | 108 | 86.11 |
GS 1 | 3 | 84 | 1 | 1 | 3 | 2 | 94 | 89.36 |
GS 2 | 1 | 2 | 96 | 3 | 2 | 4 | 108 | 88.89 |
BL | 1 | 3 | 4 | 87 | 3 | 3 | 101 | 86.14 |
W | 2 | 5 | 2 | 1 | 79 | 5 | 94 | 84.04 |
OL | 3 | 1 | 1 | 4 | 2 | 84 | 95 | 88.42 |
Total | 103 | 99 | 106 | 101 | 90 | 101 | 600 | |
Producer’s accuracy (%) | 90.29 | 84.85 | 90.57 | 86.14 | 87.78 | 83.17 | ||
Overall accuracy (%) = 87.16 |
References
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Athukorala, D.; Estoque, R.C.; Murayama, Y.; Matsushita, B. Ecosystem services monitoring in the Muthurajawela Marsh and Negombo lagoon, Sri Lanka, for sustainable landscape planning. Sustainability 2021, 13, 11463. [Google Scholar] [CrossRef]
- Athukorala, D.; Estoque, R.C.; Murayama, Y.; Matsushita, B. Impacts of urbanization on the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka: Implications for landscape planning towards a sustainable urban wetland ecosystem. Remote Sens. 2021, 13, 316. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2015, 514, 218–222. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Kifle, A.B.; Mengistu, T.G.; Stoffberg, G.H.; Tadesse, T. Climate change and population growth impacts on surface water supply and demand of Addis Ababa, Ethiopia. Clim. Risk Manag. 2017, 18, 21–33. [Google Scholar] [CrossRef]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 425, 102. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Chen, X.L.; Zhao, H.M.; Li, P.X.; Yin, Z.Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landsc. Urban Plan. 2013, 116, 60–72. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Luber, G.; McGeehin, M. Climate Change and Extreme Heat Events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef]
- Athukorala, D.; Murayama, Y. Urban heat island formation in Greater Cairo: Spatio-temporal analysis of daytime and nighttime land surface temperatures along the urban-rural gradient. Remote Sens. 2021, 13, 1396. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef]
- Athukorala, D.; Murayama, Y. Spatial Variation of Land Use / Cover Composition and Impact on Surface Urban Heat Island in a Tropical Sub-Saharan City of Accra, Ghana. Sustainability 2020, 12, 7953. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the “local climate zone” scheme using temperature observations and model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Emery, J.; Pohl, B.; Crétat, J.; Richard, Y.; Pergaud, J.; Rega, M.; Zito, S.; Dudek, J.; Vairet, T.; Joly, D.; et al. How local climate zones influence urban air temperature: Measurements by bicycle in Dijon, France. Urban Clim. 2021, 40, 101017. [Google Scholar] [CrossRef]
- Leconte, F.; Bouyer, J.; Claverie, R.; Pétrissans, M. Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Build. Environ. 2015, 83, 39–49. [Google Scholar] [CrossRef]
- Ibrahim, G.R.F. Urban land use land cover changes and their effect on land surface temperature: Case study using Dohuk City in the Kurdistan Region of Iraq. Climate 2017, 5, 13. [Google Scholar] [CrossRef]
- Bokaie, M.; Zarkesh, M.K.; Arasteh, P.D.; Hosseini, A. Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/ Land Cover in Tehran. Sustain. Cities Soc. 2016, 23, 94–104. [Google Scholar] [CrossRef]
- Derdouri, A.; Wang, R.; Murayama, Y.; Osaragi, T. Understanding the links between lulc changes and suhi in cities: Insights from two-decadal studies (2001–2020). Remote Sens. 2021, 13, 3654. [Google Scholar] [CrossRef]
- Jiang, Y.; Fu, P.; Weng, Q. Assessing the impacts of urbanization-associated land use/cover change on land surface temperature and surface moisture: A case study in the midwestern united states. Remote Sens. 2015, 7, 4880–4898. [Google Scholar] [CrossRef]
- Yan, Z.; Zhou, D.; Li, Y.; Zhang, L. An integrated assessment on the warming effects of urbanization and agriculture in highly developed urban agglomerations of China. Sci. Total Environ. 2022, 804, 150119. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.H.; Lee, D.K.; Park, C.Y.; Jeong, S.G. The influence of small green space type and structure at the street level on urban heat island mitigation. Urban For. Urban Green. 2017, 21, 203–212. [Google Scholar] [CrossRef]
- Qin, Y. Urban canyon albedo and its implication on the use of reflective cool pavements. Energy Build. 2015, 96, 86–94. [Google Scholar] [CrossRef]
- Qin, Y.; Hiller, J.E. Understanding pavement-surface energy balance and its implications on cool pavement development. Energy Build. 2014, 85, 389–399. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Estoque, R.C. Detecting Cooling Effect of Landscape from Composition and Configuration: An Urban Heat Island Study on Hangzhou. Urban For. Urban Green. 2020, 53, 126719. [Google Scholar] [CrossRef]
- Zhang, X.; Estoque, R.C.; Murayama, Y. An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustain. Cities Soc. 2017, 32, 557–568. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Hou, H.; Murayama, Y.; Wang, R.; Hu, T. Quantifying the cooling effect and scale of large inner-city lakes based on landscape patterns: A case study of Hangzhou and Nanjing. Remote Sens. 2021, 13, 1526. [Google Scholar] [CrossRef]
- Du, T.M.J.; Cilliers, S.S.; Dallimer, M.; Goddard, M.; Guenat, S.; Cornelius, S.F. Urban green infrastructure and ecosystem services in sub-Saharan Africa. Landsc. Urban Plan. 2018, 180, 249–261. [Google Scholar] [CrossRef]
- Mohan, M.; Kandya, A. Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data. Sci. Total Environ. 2015, 506, 453–465. [Google Scholar] [CrossRef]
- Fischer, E.M.; Oleson, K.W.; Lawrence, D.M. Contrasting urban and rural heat stress responses to climate change. Geophys. Res. Lett. 2012, 39, 1–8. [Google Scholar] [CrossRef]
- Mushore, T.D.; Odindi, J.; Dube, T.; Mutanga, O. Prediction of future urban surface temperatures using medium resolution satellite data in Harare metropolitan city, Zimbabwe. Build. Environ. 2017, 122, 397–410. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Ren, X.; Davies, M.; Mavrogianni, A. London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy Build. 2012, 47, 302–311. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the buildings—Past, present and future. Energy Build. 2016, 128, 617–638. [Google Scholar] [CrossRef]
- Singh, P.; Kikon, N.; Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain. Cities Soc. 2017, 32, 100–114. [Google Scholar] [CrossRef]
- Wong, N.H.; Yu, C. Study of green areas and urban heat island in a tropical city. Habitat Int. 2005, 29, 547–558. [Google Scholar] [CrossRef]
- Manatsa, D.; Chingombe, W.; Matarira, C.H. The impact of the positive Indian Ocean dipole on Zimbabwe droughts Tropical climate is understood to be dominated by. Int. J. Climatol. 2008, 2029, 2011–2029. [Google Scholar] [CrossRef]
- Tran, H.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 34–48. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y. Spatio-temporal features of urban heat island and its relationship with land use/cover in mountainous city: A case study in Chongqing. Sustainability 2018, 10, 1943. [Google Scholar] [CrossRef]
- Mishra, B.; Sandifer, J.; Gyawali, B.R. Urban Heat Island in Kathmandu, Nepal: Evaluating Relationship between NDVI and LST from 2000 to 2018. Int. J. Environ. 2013, 1, 9–19. [Google Scholar] [CrossRef]
- Sarif, M.O.; Rimal, B.; Stork, N.E. Assessment of changes in land use/land cover and land surface temperatures and their impact on surface Urban heat Island phenomena in the Kathmandu Valley (1988–2018). ISPRS Int. J. Geo-Inform. 2020, 9, 726. [Google Scholar] [CrossRef]
- Aryal, A.; Shakya, B.M.; Maharjan, M.; Talchabhadel, R.; Thapa, B.R. Evaluation of the Land Surface Temperature using Satellite Images in Kathmandu Valley. Nepal J. Civ. Eng. 2021, 1, 1–10. [Google Scholar] [CrossRef]
- Maharjan, M.; Aryal, A.; Man Shakya, B.; Talchabhadel, R.; Thapa, B.R.; Kumar, S. Evaluation of Urban Heat Island (UHI) Using Satellite Images in Densely Populated Cities of South Asia. Earth 2021, 2, 6. [Google Scholar] [CrossRef]
- UN HABITAT. For a Better Urban Cities and Climate Change Initiative: Kathmandu Valley, Nepal; United Nations Human Settlements Programme: Nairobi, Kenya, 2015. [Google Scholar]
- Karki, R.; Talchabhadel, R.; Aalto, J.; Baidya, S.K. New climatic classification of Nepal. Theor. Appl. Climatol. 2016, 125, 799–808. [Google Scholar] [CrossRef]
- Thapa, R.B.; Murayama, Y. Urban growth modeling of Kathmandu metropolitan region, Nepal. Comput. Environ. Urban Syst. 2011, 35, 25–34. [Google Scholar] [CrossRef]
- Educational Software—Maps, Learn to Read and More. Available online: http://www.yourchildlearns.com/ (accessed on 11 December 2021).
- DIVA-GIS. Available online: https://www.diva-gis.org/ (accessed on 11 December 2021).
- EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 11 December 2021).
- Thapa, R.B.; Murayama, Y. Examining Spatiotemporal Urbanization Patterns in Kathmandu Valley, Nepal: Remote Sensing and Spatial Metrics Approaches. Remote Sens. 2009, 1, 534–556. [Google Scholar] [CrossRef]
- The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 11 December 2021).
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Yu, K.; Chen, Y.; Wang, D.; Chen, Z.; Gong, A.; Li, J. Study of the seasonal effect of building shadows on urban land surface temperatures based on remote sensing data. Remote Sens. 2019, 11, 497. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Shahfahad; Talukdar, S.; Rihan, M.; Hang, H.T.; Bhaskaran, S.; Rahman, A. Modelling urban heat island (UHI) and thermal field variation and their relationship with land use indices over Delhi and Mumbai metro cities. Environ. Dev. Sustain. 2021, 24, 3762–3790. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, Z.; Tan, J. The relationship between land surface temperature and land use/land cover in Guangzhou, China. Environ. Earth Sci. 2012, 65, 1687–1694. [Google Scholar] [CrossRef]
- Du, J.; Xiang, X.; Zhao, B.; Zhou, H. Impact of urban expansion on land surface temperature in Fuzhou, China using Landsat imagery. Sustain. Cities Soc. 2020, 61, 102346. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Asgarian, A.; Amiri, B.J.; Sakieh, Y. Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosyst. 2015, 18, 209–222. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts Amherst. 2012. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 11 June 2022).
- Shrestha, K.C.S.; Ninsawat, S.; Chonwattana, S. Predicting flood events in Kathmandu Metropolitan City under climate change and urbanisation. J. Environ. Manag. 2021, 281, 111894. [Google Scholar] [CrossRef]
- Lamichhane, S.; Shakya, N.M. Shallow aquifer groundwater dynamics due to land use/cover change in highly urbanized basin: The case of Kathmandu Valley. J. Hydrol. Reg. Stud. 2020, 30, 100707. [Google Scholar] [CrossRef]
- Thapa, R.B.; Murayama, Y.; Ale, S. Kathmandu. Cities 2008, 25, 45–57. [Google Scholar] [CrossRef]
- Thapa, R.B.; Murayama, Y. Drivers of urban growth in the Kathmandu valley, Nepal: Examining the efficacy of the analytic hierarchy process. Appl. Geogr. 2010, 30, 70–83. [Google Scholar] [CrossRef]
- Luan, W.; Li, X. Rapid urbanization and its driving mechanism in the Pan-Third Pole region. Sci. Total Environ. 2021, 750, 141270. [Google Scholar] [CrossRef]
- Lamichhane, S.; Shakya, N.M. Alteration of groundwater recharge areas due to land use/cover change in Kathmandu Valley, Nepal. J. Hydrol. Reg. Stud. 2019, 26, 100635. [Google Scholar] [CrossRef]
- Mitchell, M.; Roca Iglesias, A. Urban agriculture in Kathmandu as a catalyst for the civic inclusion of migrants and the making of a greener city. Front. Arch. Res. 2019, 9, 169–190. [Google Scholar] [CrossRef]
- Haack, B.N.; Rafter, A. Urban growth analysis and modeling in the Kathmandu Valley, Nepal. Habitat Int. 2006, 30, 1056–1065. [Google Scholar] [CrossRef]
- Thapa, R.B.; Murayama, Y. Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landsc. Urban Plan. 2012, 105, 140–148. [Google Scholar] [CrossRef]
- Prajapati, R.; Upadhyay, S.; Talchabhadel, R.; Thapa, B.R.; Ertis, B.; Silwal, P.; Davids, J.C. Investigating the nexus of groundwater levels, rainfall and land-use in the Kathmandu Valley, Nepal. Groundw. Sustain. Dev. 2021, 14, 100584. [Google Scholar] [CrossRef]
- Dahal, A.; Khanal, R.; Mishra, B.K. Identification of critical location for enhancing groundwater recharge in Kathmandu Valley, Nepal. Groundw. Sustain. Dev. 2019, 9, 100253. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, Z.-F.; Ye, X.-Y.; Cai, Y.-B.; Ma, W.-C.; Chen, M.-N. Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Appl. Geogr. 2013, 44, 121–133. [Google Scholar] [CrossRef]
- Oke, T.R. City size and the urban heat island. Atmos. Env. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Yeon-Hee, K.; Jong-Jin, B. Spatial and Temporal Structure of the Urban Heat Island in Seoul. J. Appl. Meteorol. 2005, 44, 591–605. [Google Scholar]
- Xiao, R.-B.; Ouyang, Z.-Y.; Zheng, H.; Li, W.-F.; Schienke, E.W.; Wang, X.-K. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J. Environ. Sci. 2007, 19, 250–256. [Google Scholar] [CrossRef]
- Myint, S.W.; Wentz, E.A.; Brazel, A.J.; Quattrochi, D.A. The impact of distinct anthropogenic and vegetation features on urban warming. Landsc. Ecol. 2013, 28, 959–978. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 2017, 195, 1–12. [Google Scholar] [CrossRef]
- EPA (US Environmental Protection Agency). Reducing Urban Heat Islands: Com- Pendium of Strategies; US Environmental Protection Agency: Washington, DC, USA, 2008. [Google Scholar]
- Pérez, G.; Coma, J.; Sol, S.; Cabeza, L.F. Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect. Appl. Energy 2017, 187, 424–437. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Kong, L.; Lau, K.K.L.; Yuan, C.; Ng, E. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Build. Environ. 2017, 115, 1–17. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of greenspace affects land surface temperature: Evidence from the heavily urbanized Beijing metropolitan area, China. Landsc. Ecol. 2012, 27, 887–898. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS J. Photogramm. Remote Sens. 2014, 89, 59–66. [Google Scholar] [CrossRef]
- Besir, A.B.; Cuce, E. Green roofs and facades: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- Aflaki, A.; Mirnezhad, M.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Omrany, H.; Wang, Z.H.; Akbari, H. Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 2017, 62, 131–145. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, A.Y.K.; Tan, P.Y.; Wong, N.C. Energy simulation of vertical greenery systems. Energy Build. 2009, 41, 1401–1408. [Google Scholar] [CrossRef]
- Bustami, R.A.; Belusko, M.; Ward, J.; Beecham, S. Vertical greenery systems: A systematic review of research trends. Build. Environ. 2018, 146, 226–237. [Google Scholar] [CrossRef]
- Wong, N.H.; Jusuf, S.K.; Syafii, N.I.; Chen, Y.; Hajadi, N.; Sathyanarayanan, H.; Manickavasagam, Y.V. Evaluation of the impact of the surrounding urban morphology on building energy consumption. Sol. Energy 2011, 85, 57–71. [Google Scholar] [CrossRef]
- Millstein, D.; Menon, S. Regional climate consequences of large-scale cool roof and photovoltaic array deployment. Environ. Res. Lett. 2011, 6, 034001. [Google Scholar] [CrossRef]
- Dimond, K.; Webb, A. Sustainable roof selection: Environmental and contextual factors to be considered in choosing a vegetated roof or rooftop solar photovoltaic system. Sustain. Cities Soc. 2017, 35, 241–249. [Google Scholar] [CrossRef]
- Kılkış, Ş.; Krajačić, G.; Duić, N.; Montorsi, L.; Wang, Q.; Rosen, M.A.; Ahmad Al-Nimr, M. Research frontiers in sustainable development of energy, water and environment systems in a time of climate crisis. Energy Convers. Manag. 2019, 199, 1–21. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
Index | Description | Unit | Measure |
---|---|---|---|
Mean Patch Area (AREA_MN) | The average patch size of LULC classes. The spatial pattern and heterogeneity of the area. | Hectare | Composition of each LULC class in the study area (LULC classes). |
Number of Patches (NP) | Derived using the total landscape area. | Number of patches per hectare | Estimation of the fragmentation of each LULC class. |
Largest Patch Index (LPI) | Quantifies the percentage of the total landscape area taken up by the largest patch at the class level. It is a simple gauge of dominance. | 0–100 | LPI has the ability to detect the advantages of the LULC. |
Percentage of Landscape (PLANND) | Sum of the LULC classes divided by the total landscape area × 100. | Percentage | Measurement of the abundance of the corresponding LULC class. |
Cohesion (COHESION) | The physical connectivity of the corresponding patch type of the LU class increases with more clustering of the patch type in its configuration, resulting in more physical amalgamation. | 0–100 | The physical connectivity of the equivalent patches of LULC class. |
LULC Type | 2000 km2 | % | 2013 km2 | % | 2020 km2 | % |
---|---|---|---|---|---|---|
Impervious Surface | 86.96 | 21.74 | 94.58 | 23.65 | 136.98 | 34.25 |
Green Space 1 (Forest) | 116.69 | 29.17 | 99.7 | 24.93 | 88.62 | 22.16 |
Green Space 2 (Cropland/Grassland) | 149.66 | 37.42 | 153.84 | 38.46 | 127.64 | 31.91 |
Bare Land | 31.52 | 7.88 | 38.64 | 9.66 | 39.31 | 9.83 |
Water | 1.93 | 0.48 | 1.79 | 0.45 | 1.7 | 0.43 |
Other Land (Cloud/Snow/Shadow) | 13.24 | 3.31 | 11.44 | 2.86 | 5.75 | 1.44 |
RS-Based Parameters | Coefficients | |||
---|---|---|---|---|
Std. Error | Sig. | |||
2000 | ||||
(Constant) | 22.590 | 0.144 | ||
Mean NDVI | −0.031 | 0.001 | −0.319 | 0.000 |
Mean MNDWI | −0.017 | 0.001 | −0.116 | 0.000 |
Mean NDBal | 0.057 | 0.001 | 0.434 | 0.000 |
Mean elevation | −0.003 | 0.000 | −0.218 | 0.000 |
R2 = 0.696; Adjusted R2 = 0.695 | ||||
2013 | ||||
(Constant) | 35.163 | 0.124 | ||
Mean NDVI | −0.043 | 0.001 | −0.506 | 0.000 |
Mean MNDWI | −0.024 | 0.001 | −0.170 | 0.000 |
Mean NDBal | 0.042 | 0.001 | 0.410 | 0.000 |
Mean elevation | −0.006 | 0.000 | −0.453 | 0.000 |
R2 = 0.781; Adjusted R2 = 0.780 | ||||
2020 | ||||
(Constant) | 31.154 | 0.112 | ||
Mean NDVI | −0.046 | 0.001 | −0.516 | 0.000 |
Mean MNDWI | −0.045 | 0.001 | −0.410 | 0.000 |
Mean NDBal | 0.059 | 0.001 | 0.457 | 0.000 |
Mean elevation | −0.006 | 0.000 | −0.506 | 0.000 |
R2 = 0.729; Adjusted R2 = 0.729 |
2000 | 2013 | 2020 | |||||||
---|---|---|---|---|---|---|---|---|---|
IS | GS1 | GS2 | IS | GS1 | GS2 | IS | GS1 | GS2 | |
AREA_MN | 0.425 | −0.235 | −0.357 | 0.454 | −0.629 | −0.204 | 0.532 | −0.670 | −0.103 |
PD | 0.108 | −0.730 | −0.087 | 0.257 | −0.123 | −0.138 | 0.477 | −0.560 | −0.194 |
LPI | 0.127 | −0.464 | −0.039 | 0.481 | −0.614 | −0.34 | 0.505 | −0.686 | −0.024 |
PLAND | 0.173 | −0.549 | −0.151 | 0.351 | −0.800 | −0.124 | 0.421 | −0.660 | −0.112 |
COHESION | 0.209 | −0.512 | −0.196 | 0.539 | −0.789 | −0.173 | 0.611 | −0.897 | −0.262 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karunaratne, S.; Athukorala, D.; Murayama, Y.; Morimoto, T. Assessing Surface Urban Heat Island Related to Land Use/Land Cover Composition and Pattern in the Temperate Mountain Valley City of Kathmandu, Nepal. Remote Sens. 2022, 14, 4047. https://doi.org/10.3390/rs14164047
Karunaratne S, Athukorala D, Murayama Y, Morimoto T. Assessing Surface Urban Heat Island Related to Land Use/Land Cover Composition and Pattern in the Temperate Mountain Valley City of Kathmandu, Nepal. Remote Sensing. 2022; 14(16):4047. https://doi.org/10.3390/rs14164047
Chicago/Turabian StyleKarunaratne, Siri, Darshana Athukorala, Yuji Murayama, and Takehiro Morimoto. 2022. "Assessing Surface Urban Heat Island Related to Land Use/Land Cover Composition and Pattern in the Temperate Mountain Valley City of Kathmandu, Nepal" Remote Sensing 14, no. 16: 4047. https://doi.org/10.3390/rs14164047
APA StyleKarunaratne, S., Athukorala, D., Murayama, Y., & Morimoto, T. (2022). Assessing Surface Urban Heat Island Related to Land Use/Land Cover Composition and Pattern in the Temperate Mountain Valley City of Kathmandu, Nepal. Remote Sensing, 14(16), 4047. https://doi.org/10.3390/rs14164047