The Seasonality of Surface Urban Heat Islands across Climates
Abstract
:1. Introduction
2. Materials and Methods
2.1. ESA-CCI MODIS LST
2.2. Present Köppen–Geiger Climate Classification Map
2.3. City Delineation and SUHII Calculation
2.4. Data Analysis
3. Results
3.1. Delineated Cities and SUHII Climatology
3.2. SUHII Seasonal Hysteresis
3.3. Month of Minimum and Maximum SUHII
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BGA | Boundary Generation Algorithm |
BT | Brightness Temperatures |
CIMSS | Cooperative Institute for Meteorological Satellite Studies |
ESA-CCI | European Space Agency’s Climate Change Initiative |
GCOS | Global Climate Observing System |
GPCC | Global Precipitation Climatology Centre |
GSW | Generalized Split-Window |
LC | Land Cover |
LCZ | Local Climate Zones |
LST | Land Surface Temperature |
LST_cci | ESA-CCI project on Land Surface Temperature |
MODIS | Moderate Resolution Imaging Spectroradiometer |
RMSD | Root-Mean-Square-Deviation |
SD | Standard Deviation |
SUHI | Surface Urban Heat Island |
SUHII | Surface Urban Heat Island Intensity |
SW | At-surface clear-sky downwelling shortwave fluxes |
UHI | Urban Heat Island |
UNLCCS | United Nations Land Cover Classification System |
Appendix A
Climate | RMSD (K) | Correlation | Observations | |||
---|---|---|---|---|---|---|
Daytime | Nighttime | Daytime | Nighttime | Daytime | Nighttime | |
Aw | 0.6 | 0.1 | 0.97 | 0.92 | 9297 | 31,831 |
BSh | 0.8 | 0.5 | 0.96 | 0.91 | 3393 | 13,180 |
BSk | 0.6 | 0.5 | 0.97 | 0.94 | 9392 | 25,613 |
Csa | 0.7 | 0.5 | 0.94 | 0.91 | 2828 | 11,988 |
Cfa | 0.8 | 0.5 | 0.94 | 0.90 | 19,401 | 64,639 |
Cfb | 0.6 | 0.6 | 0.92 | 0.90 | 10,150 | 26,337 |
Cwa | 0.6 | 0.4 | 0.97 | 0.92 | 5519 | 26,964 |
Cwb | 0.6 | 0.4 | 0.95 | 0.95 | 469 | 974 |
Dfa | 1.1 | 0.4 | 0.94 | 0.91 | 13,951 | 29,807 |
Dfb | 0.6 | 0.6 | 0.92 | 0.94 | 20,873 | 44,667 |
Dwa | 0.5 | 0.4 | 0.97 | 0.95 | 14,775 | 41,282 |
Appendix B
References
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates, 1st ed.; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-1-139-01647-6. [Google Scholar]
- Santamouris, M. On the Energy Impact of Urban Heat Island and Global Warming on Buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Sismanidis, P.; Keramitsoglou, I.; Barberis, S.; Dorotić, H.; Bechtel, B.; Kiranoudis, C.T. PLANHEAT’s Satellite-Derived Heating and Cooling Degrees Dataset for Energy Demand Mapping and Planning. Remote Sens. 2019, 11, 2048. [Google Scholar] [CrossRef] [Green Version]
- Keramitsoglou, I.; Sismanidis, P.; Analitis, A.; Butler, T.; Founda, D.; Giannakopoulos, C.; Giannatou, E.; Karali, A.; Katsouyanni, K.; Kendrovski, V.; et al. Urban Thermal Risk Reduction: Developing and Implementing Spatially Explicit Services for Resilient Cities. Sustain. Cities Soc. 2017, 34, 56–68. [Google Scholar] [CrossRef]
- Sailor, D.J.; Baniassadi, A.; O’Lenick, C.R.; Wilhelmi, O.V. The Growing Threat of Heat Disasters. Environ. Res. Lett. 2019, 14, 054006. [Google Scholar] [CrossRef]
- Sarrat, C.; Lemonsu, A.; Masson, V.; Guedalia, D. Impact of Urban Heat Island on Regional Atmospheric Pollution. Atmos. Environ. 2006, 40, 1743–1758. [Google Scholar] [CrossRef]
- Baccini, M.; Biggeri, A.; Accetta, G.; Kosatsky, T.; Katsouyanni, K.; Analitis, A.; Anderson, H.R.; Bisanti, L.; DʼIppoliti, D.; Danova, J.; et al. Heat Effects on Mortality in 15 European Cities. Epidemiology 2008, 19, 711–719. [Google Scholar] [CrossRef]
- Zafeiratou, S.; Analitis, A.; Founda, D.; Giannakopoulos, C.; Varotsos, K.V.; Sismanidis, P.; Keramitsoglou, I.; Katsouyanni, K. Spatial Variability in the Effect of High Ambient Temperature on Mortality: An Analysis at Municipality Level within the Greater Athens Area. Int. J. Environ. Res. Public Health 2019, 16, 3689. [Google Scholar] [CrossRef] [Green Version]
- Santamouris, M.; Paraponiaris, K.; Mihalakakou, G. Estimating the Ecological Footprint of the Heat Island Effect over Athens, Greece. Clim. Chang. 2007, 80, 265–276. [Google Scholar] [CrossRef]
- Bechtel, B.; Demuzere, M.; Mills, G.; Zhan, W.; Sismanidis, P.; Small, C.; Voogt, J. SUHI Analysis Using Local Climate Zones—A Comparison of 50 Cities. Urban Clim. 2019, 28, 100451. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, X.; Smith, R.B.; Oleson, K. Strong Contributions of Local Background Climate to Urban Heat Islands. Nature 2014, 511, 216–219. [Google Scholar] [CrossRef]
- Parlow, E. Regarding Some Pitfalls in Urban Heat Island Studies Using Remote Sensing Technology. Remote Sens. 2021, 13, 3598. [Google Scholar] [CrossRef]
- Clinton, N.; Gong, P. MODIS Detected Surface Urban Heat Islands and Sinks: Global Locations and Controls. Remote Sens. Environ. 2013, 134, 294–304. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Grimmond, S.; Feigenwinter, C.; Lindberg, F.; Gastellu-Etchegorry, J.-P.; Marconcini, M.; Mitraka, Z.; Stagakis, S.; Crawford, B.; Olofson, F.; et al. Urban Energy Exchanges Monitoring from Space. Sci. Rep. 2018, 8, 11498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keramitsoglou, I.; Kiranoudis, C.T.; Ceriola, G.; Weng, Q.; Rajasekar, U. Identification and Analysis of Urban Surface Temperature Patterns in Greater Athens, Greece, Using MODIS Imagery. Remote Sens. Environ. 2011, 115, 3080–3090. [Google Scholar] [CrossRef]
- Sismanidis, P.; Keramitsoglou, I.; Kiranoudis, C.T. A Satellite-Based System for Continuous Monitoring of Surface Urban Heat Islands. Urban Clim. 2015, 14, 141–153. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal Remote Sensing of Urban Climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Venter, Z.S.; Chakraborty, T.; Lee, X. Crowdsourced Air Temperatures Contrast Satellite Measures of the Urban Heat Island and Its Mechanisms. Sci. Adv. 2021, 7, eabb9569. [Google Scholar] [CrossRef]
- Li, D.; Liao, W.; Rigden, A.J.; Liu, X.; Wang, D.; Malyshev, S.; Shevliakova, E. Urban Heat Island: Aerodynamics or Imperviousness? Sci. Adv. 2019, 5, eaau4299. [Google Scholar] [CrossRef] [Green Version]
- Stewart, I.D.; Krayenhoff, E.S.; Voogt, J.A.; Lachapelle, J.A.; Allen, M.A.; Broadbent, A.M. Time Evolution of the Surface Urban Heat Island. Earth’s Future 2021, 9, e2021EF002178. [Google Scholar] [CrossRef]
- Sismanidis, P.; Keramitsoglou, I.; Kiranoudis, C.T. Diurnal Analysis of Surface Urban Heat Island Using Spatially Enhanced Satellite Derived LST Data. In Proceedings of the 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015; pp. 1–4. [Google Scholar]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.-M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface Urban Heat Island Across 419 Global Big Cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef]
- Chakraborty, T.; Lee, X. A Simplified Urban-Extent Algorithm to Characterize Surface Urban Heat Islands on a Global Scale and Examine Vegetation Control on Their Spatiotemporal Variability. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 269–280. [Google Scholar] [CrossRef]
- Martilli, A.; Krayenhoff, E.S.; Nazarian, N. Is the Urban Heat Island Intensity Relevant for Heat Mitigation Studies? Urban Clim. 2020, 31, 100541. [Google Scholar] [CrossRef]
- Yang, X.; Yao, L. Reexamining the Relationship between Surface Urban Heat Island Intensity and Annual Precipitation: Effects of Reference Rural Land Cover. Urban Clim. 2022, 41, 101074. [Google Scholar] [CrossRef]
- Zhou, B.; Lauwaet, D.; Hooyberghs, H.; De Ridder, K.; Kropp, J.P.; Rybski, D. Assessing Seasonality in the Surface Urban Heat Island of London. J. Appl. Meteorol. Climatol. 2016, 55, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Haashemi, S.; Weng, Q.; Darvishi, A.; Alavipanah, S.K. Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City. Remote Sens. 2016, 8, 352. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B. Robustness of Annual Cycle Parameters to Characterize the Urban Thermal Landscapes. IEEE Geosci. Remote Sens. Lett. 2012, 9, 876–880. [Google Scholar] [CrossRef]
- Bechtel, B. Multitemporal Landsat Data for Urban Heat Island Assessment and Classification of Local Climate Zones. In Proceedings of the 2011 Joint Urban Remote Sensing Event, Munich, Germany, 11–13 April 2011; pp. 129–132. [Google Scholar]
- Mathew, A.; Khandelwal, S.; Kaul, N. Investigating Spatial and Seasonal Variations of Urban Heat Island Effect over Jaipur City and Its Relationship with Vegetation, Urbanization and Elevation Parameters. Sustain. Cities Soc. 2017, 35, 157–177. [Google Scholar] [CrossRef]
- Aslam, B.; Maqsoom, A.; Khalid, N.; Ullah, F.; Sepasgozar, S. Urban Overheating Assessment through Prediction of Surface Temperatures: A Case Study of Karachi, Pakistan. IJGI 2021, 10, 539. [Google Scholar] [CrossRef]
- Zhao, Z.; Sharifi, A.; Dong, X.; Shen, L.; He, B.-J. Spatial Variability and Temporal Heterogeneity of Surface Urban Heat Island Patterns and the Suitability of Local Climate Zones for Land Surface Temperature Characterization. Remote Sens. 2021, 13, 4338. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. On the Statistics of Urban Heat Island Intensity. Geophys. Res. Lett. 2013, 40, 5486–5491. [Google Scholar] [CrossRef]
- Bechtel, B.; Sismanidis, P.; Voogt, J.; Zhan, W. Seasonal Surface Urban Heat Island Analysis. In Proceedings of the 2019 Joint Urban Remote Sensing Event (JURSE), Vannes, France, 21–24 May 2019; pp. 1–4. [Google Scholar]
- Shastri, H.; Barik, B.; Ghosh, S.; Venkataraman, C.; Sadavarte, P. Flip Flop of Day-Night and Summer-Winter Surface Urban Heat Island Intensity in India. Sci. Rep. 2017, 7, 40178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, D.; Zhao, S.; Zhang, L.; Sun, G.; Liu, Y. The Footprint of Urban Heat Island Effect in China. Sci. Rep. 2015, 5, 11160. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, T.; Hsu, A.; Manya, D.; Sheriff, G. A Spatially Explicit Surface Urban Heat Island Database for the United States: Characterization, Uncertainties, and Possible Applications. ISPRS J. Photogramm. Remote Sens. 2020, 168, 74–88. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote Sensing of the Urban Heat Island Effect across Biomes in the Continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring Indicators for Quantifying Surface Urban Heat Islands of European Cities with MODIS Land Surface Temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar] [CrossRef]
- Li, X.; Stringer, L.C.; Dallimer, M. The Role of Blue Green Infrastructure in the Urban Thermal Environment across Seasons and Local Climate Zones in East Africa. Sustain. Cities Soc. 2022, 80, 103798. [Google Scholar] [CrossRef]
- Liu, Z.; Zhan, W.; Lai, J.; Bechtel, B.; Lee, X.; Hong, F.; Li, L.; Huang, F.; Li, J. Taxonomy of Seasonal and Diurnal Clear-Sky Climatology of Surface Urban Heat Island Dynamics across Global Cities. ISPRS J. Photogramm. Remote Sens. 2022, 187, 14–33. [Google Scholar] [CrossRef]
- Manoli, G.; Fatichi, S.; Bou-Zeid, E.; Katul, G.G. Seasonal Hysteresis of Surface Urban Heat Islands. Proc. Natl. Acad. Sci. USA 2020, 117, 7082–7089. [Google Scholar] [CrossRef]
- Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of Urban Heat Islands Largely Explained by Climate and Population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Dozier, J. A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef] [Green Version]
- Seemann, S.W.; Borbas, E.E.; Knuteson, R.O.; Stephenson, G.R.; Huang, H.-L. Development of a Global Infrared Land Surface Emissivity Database for Application to Clear Sky Sounding Retrievals from Multispectral Satellite Radiance Measurements. J. Appl. Meteorol. Climatol. 2008, 47, 108–123. [Google Scholar] [CrossRef]
- Ghent, D.; Veal, K.; Trent, T.; Dodd, E.; Sembhi, H.; Remedios, J. A New Approach to Defining Uncertainties for MODIS Land Surface Temperature. Remote Sens. 2019, 11, 1021. [Google Scholar] [CrossRef] [Green Version]
- ESA. ESA CCI Land Cover Product User Guide. 2017; p. 105. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 5 May 2022).
- van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. Scikit-Image: Image Processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef]
- Rozenfeld, H.D.; Rybski, D.; Gabaix, X.; Makse, H.A. The Area and Population of Cities: New Insights from a Different Perspective on Cities. Am. Econ. Rev. 2011, 101, 2205–2225. [Google Scholar] [CrossRef] [Green Version]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s New Land Surface Precipitation Climatology Based on Quality-Controlled in Situ Data and Its Role in Quantifying the Global Water Cycle. Theor. Appl. Climatol. 2014, 115, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Doelling, D.R.; Sun, M.; Nguyen, L.T.; Nordeen, M.L.; Haney, C.O.; Keyes, D.F.; Mlynczak, P.E. Advances in Geostationary-Derived Longwave Fluxes for the CERES Synoptic (SYN1deg) Product. J. Atmos. Ocean. Technol. 2016, 33, 503–521. [Google Scholar] [CrossRef]
- Gouveia, C.M.; Trigo, R.M.; Beguería, S.; Vicente-Serrano, S.M. Drought Impacts on Vegetation Activity in the Mediterranean Region: An Assessment Using Remote Sensing Data and Multi-Scale Drought Indicators. Glob. Planet. Chang. 2017, 151, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. Discuss. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Taubenböck, H.; Debray, H.; Qiu, C.; Schmitt, M.; Wang, Y.; Zhu, X.X. Seven City Types Representing Morphologic Configurations of Cities across the Globe. Cities 2020, 105, 102814. [Google Scholar] [CrossRef]
- Demuzere, M.; Bechtel, B.; Middel, A.; Mills, G. Mapping Europe into Local Climate Zones. PLoS ONE 2019, 14, e0214474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Huang, B.; Zhan, Q.; Gao, S.; Li, R.; Fan, Z. The Influence of Urban Form on Surface Urban Heat Island and Its Planning Implications: Evidence from 1288 Urban Clusters in China. Sustain. Cities Soc. 2021, 71, 102987. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. The Role of City Size and Urban Form in the Surface Urban Heat Island. Sci. Rep. 2017, 7, 4791. [Google Scholar] [CrossRef] [PubMed]
ID | ESA-CCI Land Cover Class |
---|---|
10 | Rainfed croplands |
11 | Rainfed croplands with herbaceous cover |
12 | Rainfed croplands with tree or shrub cover |
20 | Irrigated croplands |
30 | Mosaic croplands (>50%) with natural vegetation |
40 | Mosaic natural vegetation (>50%) with croplands |
110 | Mosaic herbaceous cover (>50%) with trees and shrubs |
120 | Shrublands |
121 | Evergreen shrublands |
122 | Deciduous shrublands |
130 | Grasslands |
140 | Lichens and mosses |
150 | Sparse vegetation |
151 | Sparse trees |
152 | Sparse shrubs |
153 | Sparse herbaceous cover |
200 | Bare areas |
201 | Consolidated bare areas |
ID | Parent Class | Description |
---|---|---|
Aw | Tropical | Tropical savanna with dry-winter characteristics |
BSh | Dry | Hot semi-arid |
BSk | Cold semi-arid | |
Csa | Temperate | Hot-summer mediterranean |
Cfa | Humid subtropical | |
Cfb | Oceanic | |
Cwa | Dry-winter humid subtropical | |
Cwb | Dry-winter subtropical highland | |
Dfa | Continental | Hot-summer humid continental |
Dfb | Warm-summer humid continental | |
Dwa | Monsoon-influenced hot-summer humid continental |
Climate | SUHII (K) | Rural LST (K) | ||||||
---|---|---|---|---|---|---|---|---|
Daytime | Nighttime | Daytime | Nighttime | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Aw | 1.3 | 2.7 | 1.4 | 1.2 | 311.0 | 7.0 | 296.2 | 4.0 |
BSh | −0.6 | 2.3 | 2.0 | 1.3 | 312.3 | 9.6 | 293.4 | 6.7 |
BSk | −0.1 | 2.1 | 1.9 | 1.3 | 296.5 | 17.0 | 279.7 | 13.0 |
Csa | 0.0 | 2.0 | 1.7 | 1.2 | 303.6 | 11.0 | 287.8 | 7.3 |
Cfa | 1.8 | 2.2 | 1.5 | 1.2 | 301.0 | 11.0 | 287.3 | 9.3 |
Cfb | 1.7 | 1.9 | 1.2 | 1.1 | 292.1 | 11.4 | 280.5 | 6.9 |
Cwa | 1.2 | 2.0 | 1.8 | 1.2 | 304.5 | 10.2 | 291.5 | 8.3 |
Cwb | 1.2 | 3.1 | 2.2 | 1.6 | 305.5 | 7.2 | 286.0 | 5.1 |
Dfa | 1.9 | 2.3 | 1.4 | 1.2 | 293.8 | 13.6 | 280.6 | 11.1 |
Dfb | 1.5 | 1.9 | 1.5 | 1.4 | 288.2 | 17.0 | 276.3 | 11.5 |
Dwa | 1.1 | 2.3 | 2.1 | 1.4 | 294.4 | 16.2 | 280.2 | 14.3 |
Climate | Maximum SUHII (K) | Minimum SUHII (K) | ||
---|---|---|---|---|
Daytime | Nighttime | Daytime | Nighttime | |
Aw | 4.3 ± 0.8 | 1.4 ± 0.2 | −0.1 ± 0.7 | 0.8 ± 0.2 |
BSh | - | 1.9 ± 0.2 | - | 1.1 ± 0.3 |
BSk | - | 2.0 ± 0.2 | - | 1.4 ± 0.2 |
Csa | 1.5 ± 0.4 | 1.8 ± 0.2 | 0.0 ± 0.2 | 0.9 ± 0.2 |
Cfa | 3.6 ± 0.3 | 1.7 ± 0.1 | 0.7 ± 0.1 | 1.1 ± 0.1 |
Cfb | 4.0 ± 0.2 | 1.9 ± 0.1 | 0.4 ± 0.1 | 0.4 ± 0.1 |
Cwa | 4.1 ± 0.5 | 1.9 ± 0.2 | 0.0 ± 0.2 | 1.4 ± 0.1 |
Cwb | 3.8 ± 1.3 | 2.2 ± 1.1 | 0.2 ± 0.6 | 1.3 ± 1.1 |
Dfa | 3.9 ± 0.4 | 1.9 ± 0.1 | 0.4 ± 0.1 | 0.7 ± 0.1 |
Dfb | 3.3 ± 0.2 | 2.2 ± 0.1 | 0.3 ± 0.1 | 0.7 ± 0.1 |
Dwa | 5.2 ± 0.3 | 2.4 ± 0.2 | 0.0 ± 0.1 | 1.5 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sismanidis, P.; Bechtel, B.; Perry, M.; Ghent, D. The Seasonality of Surface Urban Heat Islands across Climates. Remote Sens. 2022, 14, 2318. https://doi.org/10.3390/rs14102318
Sismanidis P, Bechtel B, Perry M, Ghent D. The Seasonality of Surface Urban Heat Islands across Climates. Remote Sensing. 2022; 14(10):2318. https://doi.org/10.3390/rs14102318
Chicago/Turabian StyleSismanidis, Panagiotis, Benjamin Bechtel, Mike Perry, and Darren Ghent. 2022. "The Seasonality of Surface Urban Heat Islands across Climates" Remote Sensing 14, no. 10: 2318. https://doi.org/10.3390/rs14102318
APA StyleSismanidis, P., Bechtel, B., Perry, M., & Ghent, D. (2022). The Seasonality of Surface Urban Heat Islands across Climates. Remote Sensing, 14(10), 2318. https://doi.org/10.3390/rs14102318