Evaluation of the Consistency of the Vegetation Clumping Index Retrieved from Updated MODIS BRDF Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. MODIS BRDF/Albedo Product
2.2. MODIS Land Cover Product
2.3. Retrieval Algorithm of the MODIS CI
2.4. Field-Measured CIs
ID | Sites | Lat. | Lon. | IGBP | Ωe | γe | CIField | CIMOD | Date | Source | |
---|---|---|---|---|---|---|---|---|---|---|---|
C5 | C6 | ||||||||||
1 | SRF | 49.250 | −82.050 | 1 | 0.88 | 1.71 | 0.51 | 0.52 | 0.49 | June 2001 | Leblanc et al. [90] |
2 | Krasnoyarsk2 | 57.233 | 91.583 | 1 | 0.85 | 1.53 | 0.56 | 0.60 | 0.58 | Summers 2000, 2001 | Leblanc et al. [90] |
3 | Okarito | −43.200 | 170.300 | 5 | 0.87 | 1.4 | 0.62 | 0.71 | 0.66 | January 2003 | Walcroft et al. [93] |
4 | SETRES | 34.902 | −79.486 | 1 | 0.9 | 1.21 | 0.74 | 0.80 | 0.79 | August 2003 | Iiames et al. [94] |
5 | Hertford | 36.383 | −77.001 | 1 | 0.94 | 1.21 | 0.78 | 0.77 | 0.68 | August 2003 | Iiames et al. [95] |
6 | SOJP | 53.916 | −104.692 | 1 | 0.85 | 1.42 | 0.6 | 0.60 | 0.57 | Summers 2003–2005 | Chen et al. [96] |
7 | HJP75 | 53.875 | −104.045 | 1 | 0.93 | 1.44 | 0.65 | 0.67 | 0.67 | Summers 2003–2005 | Chen et al. [96] |
8 | SOBS | 53.987 | −105.117 | 1 | 0.9 | 1.36 | 0.66 | 0.60 | 0.65 | Summers 2003–2005 | Chen et al. [96] |
9 | Mer Bleue | 45.400 | −75.500 | 3 | 0.87 | 1.36 | 0.627 | 0.72 | 0.63 | August 2005 | Sonnentag et al. [97] |
10 | Howland ME | 45.210 | −68.740 | 1 | 0.98 | 1.6 | 0.61 | 0.68 | 0.55 | June 2007 | Richardson (unpublished) |
11 | RAMI spruce | 58.295 | 27.256 | 1 | 0.84 | 1.42 | 0.59 | 0.58 | 0.56 | July 2008 | Pisek (unpublished) |
12 | Tonzi | 38.431 | −120.966 | 4 | 0.82 | 1 | 0.82 | 0.80 | 0.79 | September 2008 | Ryu et al. [98] |
13 | QYZ | 26.751 | 115.060 | 1 | 0.81 | 1.45 | 0.56 | 0.59 | 0.47 | April 2009 | Zhu et al. [49] |
14 | QYZ | 26.749 | 115.059 | 1 | 0.79 | 1.45 | 0.54 | 0.59 | 0.47 | April 2009 | |
15 | QYZ | 26.746 | 115.066 | 1 | 0.74 | 1.45 | 0.51 | 0.59 | 0.52 | April 2009 | |
16 | QYZ | 26.742 | 115.062 | 1 | 0.77 | 1.45 | 0.53 | 0.59 | 0.54 | April 2009 | |
17 | QYZ | 26.742 | 115.058 | 1 | 0.76 | 1.45 | 0.53 | 0.59 | 0.54 | April 2009 | |
18 | QYZ | 26.740 | 115.059 | 4 | 0.87 | 1 | 0.87 | 0.74 | 0.99 | April 2009 | |
19 | MES | 45.323 | 127.543 | 3 | 0.97 | 1.5 | 0.65 | 0.54 | 0.63 | July 2009 | Zhu et al. [49] |
20 | MES | 45.322 | 127.548 | 3 | 0.93 | 1.5 | 0.62 | 0.54 | 0.63 | July 2009 | |
21 | MES | 45.308 | 127.553 | 4 | 0.86 | 1 | 0.86 | 0.69 * | 0.61 * | July 2009 | |
22 | MES | 45.297 | 127.541 | 4 | 0.76 | 1 | 0.76 | 0.62 | 0.76 | July 2009 | |
23 | MES | 45.297 | 127.544 | 4 | 0.89 | 1 | 0.89 | 0.74 | 0.76 | July 2009 | |
24 | MES | 45.297 | 127.496 | 5 | 0.97 | 1.3 | 0.75 | 0.56 * | 0.61 | July 2009 | |
25 | MES | 45.296 | 127.540 | 4 | 0.81 | 1 | 0.81 | 0.68 | 0.76 | July 2009 | |
26 | MES | 45.295 | 127.499 | 1 | 0.95 | 1.5 | 0.63 | 0.51 | 0.59 | July 2009 | |
27 | MES | 45.294 | 127.515 | 1 | 0.97 | 1.5 | 0.65 | 0.64 | 0.59 | July 2009 | |
28 | MES | 45.267 | 127.577 | 3 | 0.97 | 1.5 | 0.65 | 0.57 | 0.66 | July 2009 | |
29 | MES | 45.266 | 127.578 | 3 | 0.93 | 1.5 | 0.62 | 0.62 | 0.59 | July 2009 | |
30 | MES | 45.308 | 127.559 | 4 | 0.89 | 1 | 0.89 | 0.81 | 0.80 | July 2009 | |
31 | TTS | 29.855 | 121.740 | 4 | 0.91 | 1 | 0.91 | 0.82 | 0.69 * | September 2009 | Zhu et al. [49] |
32 | TTS | 29.854 | 121.738 | 1 | 0.93 | 1.4 | 0.66 | 0.60 | 0.69 | September 2009 | |
33 | TTS | 29.854 | 121.696 | 2 | 0.88 | 1 | 0.88 | 0.81 | 0.62 * | September 2009 | |
34 | TTS | 29.854 | 121.701 | 1 | 0.9 | 1.5 | 0.6 | 0.60 | 0.53 | September 2009 | |
35 | TTS | 29.853 | 121.707 | 4 | 0.88 | 1 | 0.88 | 0.81 | 0.81 | September 2009 | |
36 | TTS | 29.843 | 121.748 | 4 | 0.88 | 1 | 0.88 | 0.82 | 0.90 | September 2009 | |
37 | TTS | 29.842 | 121.746 | 4 | 0.78 | 1 | 0.78 | 0.82 | 0.90 | September 2009 | |
38 | TTS | 29.804 | 121.798 | 7 | 0.83 | 1 | 0.83 | 0.75 | 0.95 | September 2009 | |
39 | TTS | 29.802 | 121.788 | 2 | 0.75 | 1 | 0.75 | 0.81 | 0.68 | September 2009 | |
40 | TTS | 29.796 | 121.804 | 7 | 0.91 | 1 | 0.91 | 0.82 | 0.54 * | September 2009 | |
41 | TTS | 29.796 | 121.732 | 4 | 0.8 | 1 | 0.8 | 0.81 | 0.36 * | September 2009 | |
42 | TTS | 29.784 | 121.806 | 1 | 0.94 | 1.4 | 0.67 | 0.60 | 0.65 | September 2009 | |
43 | TTS | 29.784 | 121.802 | 1 | 0.81 | 1.5 | 0.54 | 0.60 | 0.57 | September 2009 | |
44 | TTS | 29.783 | 121.810 | 3 | 0.89 | 1.5 | 0.59 | 0.60 | 0.55 | September 2009 | |
45 | TTS | 29.810 | 121.789 | 4 | 0.84 | 1 | 0.84 | 0.81 | 0.57 * | September 2009 | |
46 | TTS | 29.807 | 121.787 | 2 | 0.85 | 1 | 0.85 | 0.80 | 0.80 | September 2009 | |
47 | TTS | 29.785 | 121.808 | 7 | 0.84 | 1 | 0.84 | 0.80 | 0.79 | September 2009 | |
48 | TTS | 29.778 | 121.762 | 7 | 0.9 | 1 | 0.9 | 0.81 | 0.71 * | September 2009 |
Site | Latitude | Longitude | IGBP | Species | Method | Measurement Dates | References |
---|---|---|---|---|---|---|---|
Tonzi | 38.43 | −120.96 | 8 | Oak savanna woodland | DP 1 | 2009–2010 | Baldocchi, et al. [80] |
RAMI pine | 58.311 | 27.297 | 1 | Scots Pine | DHP 2 | 2011 | Kuusk, et al. [81] |
TP39 | 42.710 | −80.357 | 1 | White Pine | TRAC 3 | 2011, 2012 | Peichl, et al. [82] |
TP74 | 42.707 | −80.348 | 1 | White Pine | TRAC | 2011, 2012 | Peichl, et al. [82] |
Yatir | 31.35 | 35.03 | 1 | Aleppo pine | TRAC | 2005, 2012, 2013 | Sprintsin, et al. [83] |
Honghe | 47.652 | 133.522 | 12 | Rice | DHP | 2012, 2013 | Fang, et al. [86] |
Hailun | 47.415 | 126.818 | 12 | Maize, soybean, sorghum | DHP | 2016 | Fang, et al. [87] |
2.5. Experimental Design
3. Results
3.1. Comparison of C5 and C6 CI Products
3.1.1. Spatial Evaluation
3.1.2. Spatial Coverage of the Main Algorithm
3.1.3. Temporal Evaluation
3.2. Comparison with Field Measurements
3.2.1. Direct Validation
3.2.2. Evaluation of Seasonal Variability
4. Discussion
4.1. Uncertainty in the MODIS CI Retrievals
4.2. Uncertainty in Field-Measured CI Data
4.3. Seasonal Variability in the CI
5. Conclusions
- (1)
- The C5 and C6 CI data show similar spatial distributions globally. These two versions of data exhibit similar spatial patterns and latitudinal distributions globally in January and July, which relate to the distribution of vegetation types and leaf-on/leaf-off seasons. Forest areas have lower CI values, while grass, shrub, crop, and savanna regions display higher CI values. In the Northern Hemisphere, the January CI is generally higher than that in July, and the opposite is true in the Southern Hemisphere.
- (2)
- The C5 and C6 CI QA data show similar patterns globally, while the C6 CI data have an improved quality with more main algorithm retrievals and fewer missing values. For both versions of data, the overall proportion of main algorithm retrievals is higher in July than in January, while the C6 data show a higher rate of main algorithm retrievals and a lower rate of missing value in the summer hemisphere and a lower rate of backup algorithm retrieval in most of the world.
- (3)
- In general, the C5 and C6 CI data show similar seasonal variations in the three latitude zones (NH, SH, and Trop) and different land cover types, which is consistent with the vegetation phenology. Through quality screening and averaging, the monthly CI data have higher data quality and are recommended to characterize the overall seasonal patterns of the surface CIs well, with less uncertainty than using C5 8-day, monthly, and C6 daily CI data.
- (4)
- Through a comparison with field-measured CI data, both versions of the MODIS CI data agree with the field-measured CIs and their seasonal variations, while the C6 CI data (R2 = 0.89, RMSE = 0.05, bias = 0.02) show better consistency with the field measurements than the C5 CI data (R2 = 0.80, RMSE = 0.07, bias = 0.03).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.M.; Black, T.A. Foliage area and architecture of plant canopies from sunfleck size distributions. Agric. For. Meteorol. 1992, 60, 249–266. [Google Scholar] [CrossRef]
- Nilson, T. Theoretical analysis of frequency of gaps in plant stands. Agric. Meteorol. 1971, 8, 25–38. [Google Scholar] [CrossRef]
- Wilson, J.W. Analysis of the spatial distribution of foliage by two-dimensional point quadrats. New Phytol. 1959, 58, 92–99. [Google Scholar] [CrossRef]
- Duthoit, S.; Demarez, V.; Gastellu-Etchegorry, J.P.; Martin, E.; Roujean, J.L. Assessing the effects of the clumping phenomenon on BRDF of a maize crop based on 3D numerical scenes using DART model. Agric. For. Meteorol. 2008, 148, 1341–1352. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J.; Chen, J.M.; Croft, H.; Gonsamo, A.; He, L.; Luo, X. Assessment of foliage clumping effects on evapotranspiration estimates in forested ecosystems. Agric. For. Meteorol. 2016, 216, 82–92. [Google Scholar] [CrossRef]
- Chen, J.M.; Mo, G.; Pisek, J.; Liu, J.; Deng, F.; Ishizawa, M.; Chan, D. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Glob. Biogeochem. Cycles 2012, 26, 18. [Google Scholar] [CrossRef]
- Hill, M.J.; Roman, M.O.; Schaaf, C.B.; Hutley, L.; Brannstrom, C.; Etter, A.; Hanan, N.P. Characterizing vegetation cover in global savannas with an annual foliage clumping index derived from the MODIS BRDF product. Remote Sens. Environ. 2011, 115, 2008–2024. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Measuring Leaf-Area Index of Plant Canopies with Branch Architecture. Agric. For. Meteorol. 1991, 57, 1–12. [Google Scholar] [CrossRef]
- Pisek, J.; Chen, J.M.; Alikas, K.; Deng, F. Impacts of including forest understory brightness and foliage clumping information from multiangular measurements on leaf area index mapping over North America. J. Geophys. Res.-Biogeosci. 2010, 115, 13. [Google Scholar] [CrossRef]
- Zhu, X.; Skidmore, A.K.; Wang, T.J.; Liu, J.; Darvishzadeh, R.; Shi, Y.F.; Premier, J.; Heurich, M. Improving leaf area index (LAI) estimation by correcting for clumping and woody effects using terrestrial laser scanning. Agric. For. Meteorol. 2018, 263, 276–286. [Google Scholar] [CrossRef]
- Stenberg, P. Correcting LAI-2000 estimates for the clumping of needles in shoots of conifers. Agric. For. Meteorol. 1996, 79, 1–8. [Google Scholar] [CrossRef]
- Chen, J.M.; Liu, J.; Leblanc, S.G.; Lacaze, R.; Roujean, J.L. Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sens. Environ. 2003, 84, 516–525. [Google Scholar] [CrossRef]
- Chen, B.; Lu, X.H.; Wang, S.Q.; Chen, J.M.; Liu, Y.; Fang, H.L.; Liu, Z.H.; Jiang, F.; Arain, M.A.; Chen, J.H.; et al. Evaluation of Clumping Effects on the Estimation of Global Terrestrial Evapotranspiration. Remote Sens. 2021, 13, 4075. [Google Scholar] [CrossRef]
- Chen, J.M.; Ju, W.M.; Ciais, P.; Viovy, N.; Liu, R.G.; Liu, Y.; Lu, X.H. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 2019, 10, 7. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Kustas, W.P.; Li, F.Q.; Prueger, J.H.; Mecikalski, J.R. Effects of vegetation clumping on two-source model estimates of surface energy fluxes from an agricultural landscape during SMACEX. J. Hydrometeorol. 2005, 6, 892–909. [Google Scholar] [CrossRef]
- Chen, H.Y.; Niu, Z.; Huang, W.J.; Feng, J.L. Predicting leaf area index in wheat using an improved empirical model. J. Appl. Remote Sens. 2013, 7, 073577. [Google Scholar] [CrossRef]
- Roujean, J.L.; Lacaze, R. Global mapping of vegetation parameters from POLDER multiangular measurements for studies of surface-atmosphere interactions: A pragmatic method and its validation. J. Geophys. Res.-Atmos. 2002, 107, 20. [Google Scholar] [CrossRef]
- Gobron, N.; Pinty, B.; Verstraete, M.M.; Widlowski, J.L.; Diner, D.J. Uniqueness of multiangular measurements—Part II: Joint retrieval of vegetation structure and photosynthetic activity from MISR. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1574–1592. [Google Scholar] [CrossRef]
- Strahler, A.H. Vegetation canopy reflectance modeling—Recent developments and remote sensing perspectives. Remote Sens. Rev. 1997, 15, 179–194. [Google Scholar] [CrossRef]
- Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical Considerations and Nomenclature for Reflectance; U.S. Department of Commerce: Washington, DC, USA, 1977. [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.W.; Tsang, T.; Strugnell, N.C.; Zhang, X.Y.; Jin, Y.F.; Muller, J.P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Jiao, Z.T.; Hill, M.J.; Schaaf, C.B.; Zhang, H.; Wang, Z.S.; Li, X.W. An Anisotropic Flat Index (AFX) to derive BRDF archetypes from MODIS. Remote Sens. Environ. 2014, 141, 168–187. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M.; White, H.P.; Cihlar, J.; Lacaze, R.; Roujean, J.-L.; Latifovic, R. Mapping vegetation Clumping index from directional satellite measurements. In Proceedings of the 8th International Symposium Physical Measurements & Signatures in Remote Sensing, Aussois, France, 8–12 January 2001; pp. 450–459. [Google Scholar]
- Chen, J.M.; Menges, C.H.; Leblanc, S.G. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 2005, 97, 447–457. [Google Scholar] [CrossRef]
- He, L.M.; Chen, J.M.; Pisek, J.; Schaaf, C.B.; Strahler, A.H. Global clumping index map derived from the MODIS BRDF product. Remote Sens. Environ. 2012, 119, 118–130. [Google Scholar] [CrossRef]
- Jiao, Z.T.; Dong, Y.D.; Schaaf, C.B.; Chen, J.M.; Roman, M.; Wang, Z.S.; Zhang, H.; Ding, A.X.; Erb, A.; Hill, M.J.; et al. An algorithm for the retrieval of the clumping index (CI) from the MODIS BRDF product using an adjusted version of the kernel-driven BRDF model. Remote Sens. Environ. 2018, 209, 594–611. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M.; White, H.P.; Latifovic, R.; Lacaze, R.; Roujean, J.-L. Canada-wide foliage clumping index mapping from multiangular POLDER measurements. Can. J. Remote Sens. 2005, 31, 364–376. [Google Scholar] [CrossRef]
- Pisek, J.; Chen, J.M.; Nilson, T. Estimation of vegetation clumping index using MODIS BRDF data. Int. J. Remote Sens. 2011, 32, 2645–2657. [Google Scholar] [CrossRef]
- Wei, S.S.; Fang, H.L. Estimation of canopy clumping index from MISR and MODIS sensors using the normalized difference hotspot and darkspot (NDHD) method: The influence of BRDF models and solar zenith angle. Remote Sens. Environ. 2016, 187, 476–491. [Google Scholar] [CrossRef]
- Wei, S.S.; Fang, H.L.; Schaaf, C.B.; He, L.M.; Chen, J.M. Global 500 m clumping index product derived from MODIS BRDF data (2001–2017). Remote Sens. Environ. 2019, 232, 15. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Wang, Z.; Strahler, A.H. Commentary on Wang and Zender-MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland. Remote Sens. Environ. 2011, 115, 1296–1300. [Google Scholar] [CrossRef]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef]
- Roujean, J.L.; Leroy, M.; Deschamps, P.Y. A bidirectional reflectance model of the earths surface for the correction of remote-sensing data. J. Geophys. Res.-Atmos. 1992, 97, 20455–20468. [Google Scholar] [CrossRef]
- Wanner, W.; Li, X.; Strahler, A.H. On the derivation of kernels for kernel-driven models of bidirectional reflectance. J. Geophys. Res.-Atmos. 1995, 100, 21077–21089. [Google Scholar] [CrossRef]
- Wang, Z.S.; Schaaf, C.B.; Sun, Q.S.; Shuai, Y.M.; Roman, M.O. Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products. Remote Sens. Environ. 2018, 207, 50–64. [Google Scholar] [CrossRef]
- Schaaf, C. MODIS User Guide V006 and V006.1. Available online: https://www.umb.edu/spectralmass/terra_aqua_modis/v006 (accessed on 16 December 2021).
- Xiong, X.X.; Angal, A.; Li, Y.H.; Twedt, K. Improvements of on-orbit characterization of Terra MODIS short-wave infrared spectral bands out-of-band responses. J. Appl. Remote Sens. 2020, 14, 14. [Google Scholar] [CrossRef]
- Toller, G.; Xiong, X.X.; Sun, J.Q.; Wenny, B.N.; Geng, X.; Kuyper, J.; Angal, A.; Chen, H.D.; Madhavan, S.; Wu, A.S. Terra and Aqua moderate-resolution imaging spectroradiometer collection 6 level 1B algorithm. J. Appl. Remote Sens. 2013, 7, 17. [Google Scholar] [CrossRef]
- Cui, L.; Jiao, Z.T.; Dong, Y.D.; Sun, M.; Zhang, X.N.; Yin, S.Y.; Ding, A.X.; Chang, Y.X.; Guo, J.; Xie, R. Estimating Forest Canopy Height Using MODIS BRDF Data Emphasizing Typical-Angle Reflectances. Remote Sens. 2019, 11, 2239. [Google Scholar] [CrossRef]
- Pisek, J.; Rautiainen, M.; Nikopensius, M.; Raabe, K. Estimation of seasonal dynamics of understory NDVI in northern forests using MODIS BRDF data: Semi-empirical versus physically-based approach. Remote Sens. Environ. 2015, 163, 42–47. [Google Scholar] [CrossRef]
- Zhang, X.N.; Jiao, Z.T.; Zhao, C.S.; Yin, S.Y.; Cui, L.; Dong, Y.D.; Zhang, H.; Guo, J.; Xie, R.; Li, S.J.; et al. Retrieval of Leaf Area Index by Linking the PROSAIL and Ross-Li BRDF Models Using MODIS BRDF Data. Remote Sens. 2021, 13, 4911. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, M.; Jiao, Z.; Lian, Y.; Chen, L.; Cui, L.; Zhang, X.; Liu, Y.; Dong, Y.; Qian, D.; et al. Reflectance Anisotropy from MODIS for Albedo Retrieval from a Single Directional Reflectance. Remote Sens. 2022, 14, 3627. [Google Scholar] [CrossRef]
- Hu, P.B.; Sharifi, A.; Tahir, M.N.; Tariq, A.; Zhang, L.L.; Mumtaz, F.; Shah, S. Evaluation of Vegetation Indices and Phenological Metrics Using Time-Series MODIS Data for Monitoring Vegetation Change in Punjab, Pakistan. Water 2021, 13, 2550. [Google Scholar] [CrossRef]
- Sarvia, F.; De Petris, S.; Borgogno-Mondino, E. Exploring Climate Change Effects on Vegetation Phenology by MOD13Q1 Data: The Piemonte Region Case Study in the Period 2001–2019. Agronomy 2021, 11, 555. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Friedl, M.A.; Schaaf, C.B. Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res.-Biogeosci. 2006, 111, 14. [Google Scholar] [CrossRef]
- He, L.M.; Liu, J.; Chen, J.M.; Croft, H.; Wang, R.; Sprintsin, M.; Zheng, T.R.; Ryu, Y.; Piseke, J.; Gonsamo, A.; et al. Inter- and intra-annual variations of clumping index derived from the MODIS BRDF product. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 53–60. [Google Scholar] [CrossRef]
- Hill, M.J.; Averill, C.; Jiao, Z.; Schaaf, C.B.; Armston, J.D. Relationship of MISR RPV parameters and MODIS BRDF shape indicators to surface vegetation patterns in an Australian tropical savanna. Can. J. Remote Sens. 2008, 34, S247–S267. [Google Scholar] [CrossRef]
- Zhu, G.; Ju, W.; Chen, J.M.; Gong, P.; Xing, B.; Zhu, J. Foliage Clumping Index Over China’s Landmass Retrieved From the MODIS BRDF Parameters Product. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2122–2137. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.G.; Chen, J.M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res.-Biogeosci. 2012, 117, 14. [Google Scholar] [CrossRef]
- Xiao, Z.Q.; Liang, S.L.; Wang, J.D.; Chen, P.; Yin, X.J.; Zhang, L.Q.; Song, J.L. Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product From Time-Series MODIS Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2014, 52, 209–223. [Google Scholar] [CrossRef]
- Gonsamo, A.; Chen, J.M. Improved LAI Algorithm Implementation to MODIS Data by Incorporating Background, Topography, and Foliage Clumping Information. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1076–1088. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Xie, S.; Liu, X.; Song, B.; Chen, S.; Peng, D. Global White-Sky and Black-Sky FAPAR Retrieval Using the Energy Balance Residual Method: Algorithm and Validation. Remote Sens. 2019, 11, 1004. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Liu, Q.; Xu, B.; Yu, W.; Lin, S.; Hu, Z. Estimating fractional vegetation cover from leaf area index and clumping index based on the gap probability theory. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102112. [Google Scholar] [CrossRef]
- Ryu, Y.; Baldocchi, D.D.; Kobayashi, H.; van Ingen, C.; Li, J.; Black, T.A.; Beringer, J.; van Gorsel, E.; Knohl, A.; Law, B.E.; et al. Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Glob. Biogeochem. Cycles 2011, 25, 24. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, J.M.; Chen, J.; Gough, C.M.; Martin, T.A.; Dragoni, D. Evaluating spatial and temporal patterns of MODIS GPP over the conterminous U.S. against flux measurements and a process model. Remote Sens. Environ. 2012, 124, 717–729. [Google Scholar] [CrossRef]
- He, L.M.; Chen, J.M.; Liu, J.; Mo, G.; Joiner, J. Angular normalization of GOME-2 Sun-induced chlorophyll fluorescence observation as a better proxy of vegetation productivity. Geophys. Res. Lett. 2017, 44, 5691–5699. [Google Scholar] [CrossRef]
- Pu, J.B.; Yan, K.; Zhou, G.H.; Lei, Y.Q.; Zhu, Y.X.; Guo, D.H.; Li, H.L.; Xu, L.L.; Knyazikhin, Y.; Myneni, R.B. Evaluation of the MODIS LAI/FPAR Algorithm Based on 3D-RTM Simulations: A Case Study of Grassland. Remote Sens. 2020, 12, 3391. [Google Scholar] [CrossRef]
- Verhoef, W. Bi-hemispherical Canopy Reflectance Model with Surface Heterogeneity Effects for the Estimation of LAI and fAPAR from MODIS White-Sky Spectral Albedo Data. Remote Sens. 2021, 13, 1976. [Google Scholar] [CrossRef]
- Che, X.H.; Feng, M.; Sexton, J.O.; Channan, S.; Yang, Y.P.; Sun, Q. Assessment of MODIS BRDF/Albedo Model Parameters (MCD43A1 Collection 6) for Directional Reflectance Retrieval. Remote Sens. 2017, 9, 1123. [Google Scholar] [CrossRef]
- Vidot, J.; Brunel, P.; Dumont, M.; Carmagnola, C.; Hocking, J. The VIS/NIR Land and Snow BRDF Atlas for RTTOV: Comparison between MODIS MCD43C1 C5 and C6. Remote Sens. 2018, 10, 21. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Hill, M.J. Calibration and validation of the Australian fractional cover product for MODIS collection 6. Remote Sens. Lett. 2018, 9, 696–705. [Google Scholar] [CrossRef]
- Lucht, W.; Lewis, P. Theoretical noise sensitivity of BRDF and albedo retrieval from the EOS-MODIS and MISR sensors with respect to angular sampling. Int. J. Remote Sens. 2000, 21, 81–98. [Google Scholar] [CrossRef]
- Ross, J. The Radiation Regime and Architecture of Plant Stands; Springer Science & Business Media: Hague, The Netherlands, 1981. [Google Scholar]
- Li, X.W.; Strahler, A.H. Geometric-optical bidirectional refelectance modeling of the disctrete crown vegetation canopy—Effect of crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens. 1992, 30, 276–292. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Roy, D.P.; Vermote, E. MODIS land data storage, gridding, and compositing methodology: Level 2 grid. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1324–1338. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X.M. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Jiao, Z.T.; Zhang, X.N.; Breon, F.M.; Dong, Y.D.; Schaaf, C.B.; Roman, M.; Wang, Z.S.; Cui, L.; Yin, S.Y.; Ding, A.X.; et al. The influence of spatial resolution on the angular variation patterns of optical reflectance as retrieved from MODIS and POLDER measurements. Remote Sens. Environ. 2018, 215, 371–385. [Google Scholar] [CrossRef]
- Chen, J.M.; Leblanc, S.G. A four-scale bidirectional reflectance model based on canopy architecture. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1316–1337. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Bicheron, P.; Chen, J.M.; Leroy, M.; Cihlar, J. Investigation of directional reflectance in boreal forests with an improved four-scale model and airborne POLDER data. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1396–1414. [Google Scholar] [CrossRef]
- Chen, J.M.; Cihlar, J. A hotspot function in a simple bidirectional reflectance model for satellite applications. J. Geophys. Res.-Atmos. 1997, 102, 25907–25913. [Google Scholar] [CrossRef]
- Jiao, Z.T.; Schaaf, C.B.; Dong, Y.D.; Roman, M.; Hill, M.J.; Chen, J.M.; Wang, Z.S.; Zhang, H.; Saenz, E.; Poudyal, R.; et al. A method for improving hotspot directional signatures in BRDF models used for MODIS. Remote Sens. Environ. 2016, 186, 135–151. [Google Scholar] [CrossRef]
- Maignan, F.; Breon, F.M.; Lacaze, R. Bidirectional reflectance of Earth targets: Evaluation of analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot. Remote Sens. Environ. 2004, 90, 210–220. [Google Scholar] [CrossRef]
- Pisek, J.; Lang, M.; Nilson, T.; Korhonen, L.; Karu, H. Comparison of methods for measuring gap size distribution and canopy nonrandomness at Jarvselja RAMI (RAdiation transfer Model Intercomparison) test sites. Agric. For. Meteorol. 2011, 151, 365–377. [Google Scholar] [CrossRef]
- Chen, J.M.; Cihlar, J. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Appl. Opt. 1995, 34, 6211–6222. [Google Scholar] [CrossRef] [PubMed]
- Román, M.O.; Schaaf, C.B.; Woodcock, C.E.; Strahler, A.H.; Yang, X.Y.; Braswell, R.H.; Curtis, P.S.; Davis, K.J.; Dragoni, D.; Goulden, M.L.; et al. The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sens. Environ. 2009, 113, 2476–2498. [Google Scholar] [CrossRef]
- Fang, H. Vegetation Structural Field Measurement Data for Northeastern China Crops (NECC); PANGAEA: Bremerhaven, Germany, 2021. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Xu, L.; Kiang, N. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak–grass savanna and an annual grassland. Agric. For. Meteorol. 2004, 123, 13–39. [Google Scholar] [CrossRef]
- Kuusk, A.; Lang, M.; Kuusk, J. Database of optical and structural data for the validation of forest radiative transfer models. In Light Scattering Reviews 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface; Kokhanovsky, A.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 109–148. [Google Scholar]
- Peichl, M.; Arain, M.A.; Brodeur, J.J. Age effects on carbon fluxes in temperate pine forests. Agric. For. Meteorol. 2010, 150, 1090–1101. [Google Scholar] [CrossRef]
- Sprintsin, M.; Cohen, S.; Maseyk, K.; Rotenberg, E.; Grunzweig, J.; Karnieli, A.; Berliner, P.; Yakir, D. Long term and seasonal courses of leaf area index in a semi-arid forest plantation. Agric. For. Meteorol. 2011, 151, 565–574. [Google Scholar] [CrossRef]
- Grünzweig, J.M.; Lin, T.; Rotenberg, E.; Schwartz, A.; Yakir, D. Carbon sequestration in arid-land forest. Glob. Chang. Biol. 2003, 9, 791–799. [Google Scholar] [CrossRef]
- Fang, H.L.; Zhang, Y.H.; Wei, S.S.; Li, W.J.; Ye, Y.C.; Sun, T.; Liu, W.W. Validation of global moderate resolution leaf area index (LAI) products over croplands in northeastern China. Remote Sens. Environ. 2019, 233, 19. [Google Scholar] [CrossRef]
- Fang, H.L.; Li, W.J.; Wei, S.S.; Jiang, C.Y. Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods. Agric. For. Meteorol. 2014, 198, 126–141. [Google Scholar] [CrossRef]
- Fang, H.L.; Ye, Y.C.; Liu, W.W.; Wei, S.S.; Ma, L. Continuous estimation of canopy leaf area index (LAI) and clumping index over broadleaf crop fields: An investigation of the PASTIS-57 instrument and smartphone applications. Agric. For. Meteorol. 2018, 253, 48–61. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. CAN-EYE V6.313 User Manual. Available online: http://www6.paca.inra.fr/can-eye/Documentation-Publications/Documentation (accessed on 23 September 2017).
- Pisek, J.; Ryu, Y.; Sprintsin, M.; He, L.M.; Oliphant, A.J.; Korhonen, L.; Kuusk, J.; Kuusk, A.; Bergstrom, R.; Verrelst, J.; et al. Retrieving vegetation clumping index from-Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution. Remote Sens. Environ. 2013, 138, 126–133. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M.; Fernandes, R.; Deering, D.W.; Conley, A. Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agric. For. Meteorol. 2005, 129, 187–207. [Google Scholar] [CrossRef]
- Ryu, Y.; Verfaillie, J.; Macfarlane, C.; Kobayashi, H.; Sonnentag, O.; Vargas, R.; Ma, S.; Baldocchi, D.D. Continuous observation of tree leaf area index at ecosystem scale using upward-pointing digital cameras. Remote Sens. Environ. 2012, 126, 116–125. [Google Scholar] [CrossRef]
- Macfarlane, C.; Hoffman, M.; Eamus, D.; Kerp, N.; Higginson, S.; McMurtrie, R.; Adams, M. Estimation of leaf area index in eucalypt forest using digital photography. Agric. For. Meteorol. 2007, 143, 176–188. [Google Scholar] [CrossRef]
- Walcroft, A.S.; Brown, K.J.; Schuster, W.S.F.; Tissue, D.T.; Turnbull, M.H.; Griffin, K.L.; Whitehead, D. Radiative transfer and carbon assimilation in relation to canopy architecture, foliage area distribution and clumping in a mature temperate rainforest canopy in New Zealand. Agric. For. Meteorol. 2005, 135, 326–339. [Google Scholar] [CrossRef]
- Iiames, J.S.; Congalton, R.; Pilant, A.; Lewis, T. Validation of an integrated estimation of loblolly pine (Pinus taeda L.) leaf area index (LAI) using two indirect optical methods in the southeastern United States. South. J. Appl. For. 2008, 32, 101–110. [Google Scholar] [CrossRef]
- Iiames, J.S.; Pilant, A.; Lewis, T. In Situ Estimates of Forest LAI for MODIS Data Validation. In Remote Sensing and GIS Accuracy Assessment; CRC Press: Boca Raton, FL, USA, 2004; pp. 41–57. [Google Scholar]
- Chen, J.M.; Govind, A.; Sonnentag, O.; Zhang, Y.Q.; Barr, A.; Amiro, B. Leaf area index measurements at Fluxnet-Canada forest sites. Agric. For. Meteorol. 2006, 140, 257–268. [Google Scholar] [CrossRef]
- Sonnentag, O.; Talbot, J.; Chen, J.M.; Roulet, N.T. Using direct and indirect measurements of leaf area index to characterize the shrub canopy in an ombrotrophic peatland. Agric. For. Meteorol. 2007, 144, 200–212. [Google Scholar] [CrossRef]
- Ryu, Y.; Sonnentag, O.; Nilson, T.; Vargas, R.; Kobayashi, H.; Wenk, R.; Baldocchi, D.D. How to quantify tree leaf area index in an open savanna ecosystem: A multi-instrument and multi-model approach. Agric. For. Meteorol. 2010, 150, 63–76. [Google Scholar] [CrossRef]
- Pisek, J.; Govind, A.; Arndt, S.K.; Hocking, D.; Wardlaw, T.J.; Fang, H.; Matteucci, G.; Longdoz, B. Intercomparison of clumping index estimates from POLDER, MODIS, and MISR satellite data over reference sites. ISPRS J. Photogramm. Remote Sens. 2015, 101, 47–56. [Google Scholar] [CrossRef]
- Dong, Y.D.; Jiao, Z.T.; Yin, S.Y.; Zhang, H.; Zhang, X.N.; Cui, L.; He, D.D.; Ding, A.X.; Chang, Y.X.; Yang, S.T. Influence of Snow on the Magnitude and Seasonal Variation of the Clumping Index Retrieved from MODIS BRDF Products. Remote Sens. 2018, 10, 1194. [Google Scholar] [CrossRef]
- He, L.; Chen, J.M.; Pan, Y.; Birdsey, R.; Kattge, J. Relationships between net primary productivity and forest stand age in U.S. forests. Glob. Biogeochem. Cycles 2012, 26, GB3009. [Google Scholar] [CrossRef]
- Van Stan II, J.T.; Coenders-Gerrits, M.; Dibble, M.; Bogeholz, P.; Norman, Z. Effects of phenology and meteorological disturbance on litter rainfall interception for a Pinus elliottii stand in the Southeastern United States. Hydrol. Process. 2017, 31, 3719–3728. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, W.; Liu, X.; Zhang, L.; Dend, F.; Yang, C.; Sun, Q. Evaluation of Carbon Sequestration of Forest Ecosystem in Xiamen City. Res. Environ. Sci. 2019, 32, 2001–2007. [Google Scholar]
- Wang, Z.S.; Schaaf, C.B.; Chopping, M.J.; Strahler, A.H.; Wang, J.D.; Roman, M.O.; Rocha, A.V.; Woodcock, C.E.; Shuai, Y.M. Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra. Remote Sens. Environ. 2012, 117, 264–280. [Google Scholar] [CrossRef]
- Wang, Z.S.; Schaaf, C.B.; Strahler, A.H.; Chopping, M.J.; Roman, M.O.; Shuai, Y.M.; Woodcock, C.E.; Hollinger, D.Y.; Fitzjarrald, D.R. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens. Environ. 2014, 140, 60–77. [Google Scholar] [CrossRef]
- Wang, Z.S.; Schaaf, C.B.; Sun, Q.S.; Kim, J.; Erb, A.M.; Gao, F.; Roman, M.O.; Yang, Y.; Petroy, S.; Taylor, J.R.; et al. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 104–117. [Google Scholar] [CrossRef]
- Strugnell, N.C.; Lucht, W. An algorithm to infer continental-scale albedo from AVHRR data, land cover class, and field observations of typical BRDFs. J. Clim. 2001, 14, 1360–1376. [Google Scholar] [CrossRef]
- Jin, Y.F.; Schaaf, C.B.; Woodcock, C.E.; Gao, F.; Li, X.W.; Strahler, A.H.; Lucht, W.; Liang, S.L. Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation. J. Geophys. Res.-Atmos. 2003, 108, 15. [Google Scholar] [CrossRef]
- Jin, Y.F.; Schaaf, C.B.; Gao, F.; Li, X.W.; Strahler, A.H.; Lucht, W.; Liang, S.L. Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 1. Algorithm performance. J. Geophys. Res.-Atmos. 2003, 108, 13. [Google Scholar] [CrossRef]
- Griffin, J.R. Oak woodland. In Terrestrial Vegetation of California; Barbour, M.G., Major, J., Eds.; California Native Plant Society: London, UK, 1988; pp. 383–415. [Google Scholar]
- Pisek, J.; Chen, J.M.; Lacaze, R.; Sonnentag, O.; Alikas, K. Expanding global mapping of the foliage clumping index with multi-angular POLDER three measurements: Evaluation and topographic compensation. ISPRS J. Photogramm. Remote Sens. 2010, 65, 341–346. [Google Scholar] [CrossRef]
- Leblanc, S.G. Correction to the plant canopy gap-size analysis theory used by the Tracing Radiation and Architecture of Canopies instrument. Appl. Opt. 2002, 41, 7667–7670. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A.; Adams, R.S. Evaluation of hemispherical photography for determining plant-area index and geometry of a forest stand. Agric. For. Meteorol. 1991, 56, 129–143. [Google Scholar] [CrossRef]
- Demarez, V.; Duthoit, S.; Baret, F.; Weiss, M.; Dedieu, G. Estimation of leaf area and clumping indexes of crops with hemispherical photographs. Agric. For. Meteorol. 2008, 148, 644–655. [Google Scholar] [CrossRef]
- Lang, A.R.G.; Xiang, Y.Q. Estimation of leaf-area index from transmission of direct sunlight in discontinuous canopies. Agric. For. Meteorol. 1986, 37, 229–243. [Google Scholar] [CrossRef]
- Fang, H.L.; Liu, W.W.; Li, W.J.; Wei, S.S. Estimation of the directional and whole apparent clumping index (ACI) from indirect optical measurements. ISPRS J. Photogramm. Remote Sens. 2018, 144, 1–13. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M.; Kwong, M. Tracing Radiation and Architecture of Canopies (TRAC) Manual. TRAC MANUAL Version 2.1.4; Natural Resources Canada: Saint-Hubert, QC, Canada, 2005; pp. 12–13.
- Fernandes, R.; Plummer, S.; Nightingale, J.; Baret, F.; Camacho, F.; Fang, H.; Garrigues, S.; Gobron, N.; Lang, M.; Lacaze, R.; et al. Global leaf area index product validation good practices. In Best Practice for Satellite-Derived Land Product Validation; Version 2.0; Schaepman-Strub, G., Román, M., Nickeson, J., Eds.; Land Product Validation Subgroup (WGCV/CEOS): Washington, DC, USA, 2014; p. 76. [Google Scholar]
- Morisette, J.T.; Baret, F.; Privette, J.L.; Myneni, R.B.; Nickeson, J.E.; Garrigues, S.; Shabanov, N.V.; Weiss, M.; Fernandes, R.A.; Leblanc, S.G. Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1804–1817. [Google Scholar] [CrossRef]
- Justice, C.O.; Roman, M.O.; Csiszar, I.; Vermote, E.F.; Wolfe, R.E.; Hook, S.J.; Friedl, M.; Wang, Z.S.; Schaaf, C.B.; Miura, T.; et al. Land and cryosphere products from Suomi NPP VIIRS: Overview and status. J. Geophys. Res.-Atmos. 2013, 118, 9753–9765. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, S.; Jiao, Z.; Dong, Y.; Zhang, X.; Cui, L.; Xie, R.; Guo, J.; Li, S.; Zhu, Z.; Tong, Y.; et al. Evaluation of the Consistency of the Vegetation Clumping Index Retrieved from Updated MODIS BRDF Data. Remote Sens. 2022, 14, 3997. https://doi.org/10.3390/rs14163997
Yin S, Jiao Z, Dong Y, Zhang X, Cui L, Xie R, Guo J, Li S, Zhu Z, Tong Y, et al. Evaluation of the Consistency of the Vegetation Clumping Index Retrieved from Updated MODIS BRDF Data. Remote Sensing. 2022; 14(16):3997. https://doi.org/10.3390/rs14163997
Chicago/Turabian StyleYin, Siyang, Ziti Jiao, Yadong Dong, Xiaoning Zhang, Lei Cui, Rui Xie, Jing Guo, Sijie Li, Zidong Zhu, Yidong Tong, and et al. 2022. "Evaluation of the Consistency of the Vegetation Clumping Index Retrieved from Updated MODIS BRDF Data" Remote Sensing 14, no. 16: 3997. https://doi.org/10.3390/rs14163997
APA StyleYin, S., Jiao, Z., Dong, Y., Zhang, X., Cui, L., Xie, R., Guo, J., Li, S., Zhu, Z., Tong, Y., & Wang, C. (2022). Evaluation of the Consistency of the Vegetation Clumping Index Retrieved from Updated MODIS BRDF Data. Remote Sensing, 14(16), 3997. https://doi.org/10.3390/rs14163997