Recognition and Classification of Martian Chaos Terrains Using Imagery Machine Learning: A Global Distribution of Chaos Linked to Groundwater Circulation, Catastrophic Flooding, and Magmatism on Mars
Abstract
:1. Introduction
2. Methods
2.1. Outline of the Methodology
2.2. Convolutional Neural Network
2.3. Dataset
2.3.1. Image Data
AHO Chaos Blocks
AP Chaos Blocks
Non-Chaos Surface Features
2.3.2. Target Data
2.4. Analytical Methods
2.4.1. Calculations of Accuracy Rates, Precision Rates, Recall Rates, and F-Measures
2.4.2. Heat Map
2.5. Search for Chaos-like Features
3. Results
3.1. Comparison of Developed Classifiers
3.2. Sensitivity to the Dataset and Batch Size
4. Classification of Martian Chaos Terrain
4.1. Distribution of Recognized Chaos on Mars
4.2. Comparison with Previously Proposed Formation Mechanisms
4.3. Discussion of Possible Criteria for Classification
5. Implications for Geohydrology and the Cryosphere on Mars
5.1. Types of Chaos Terrain Based on Machine Learning Classification
5.2. Hybrid Chaos Terrains
5.3. AHO-Dominant Chaos Terrains
6. Conclusions
- Our new classifiers achieve high accuracy rates in recognizing chaos on Mars. The accuracies achieved are 93.5% ± 0.7%, 91.3% ± 2.6%, and 88.5% ± 2.1% for the CTX, THEMIS, and MOLA classifiers, respectively, with 4 Division images and a batch size of 64 (Table 1).
- The chaos terrains recognized by our classifiers are predominantly distributed in the circum-Chryse outflow channel region and near the dichotomy boundary (Figure 7). We identified two types of chaos terrain on Mars. One is hybrid chaos terrain, where images classified as both AHO and AP chaos blocks co-exist in one terrain. The other is AHO-dominant chaos terrain, where AHO chaos blocks are predominant. Hybrid chaos terrains are located predominantly around the circum-Chryse outflow channel region, whereas AHO-dominant chaos terrains are distributed widely around the dichotomy boundary.
- We suggest that AHO chaos blocks tend to be more eroded than AP chaos blocks, possibly due to outbursts of groundwater flows. The detailed differences in morphology of the blocks and troughs may be important for the final classification.
- Hybrid chaos terrains in the circum-Chryse outflow channels region could have been formed by a combination of uplift and infiltration of magma chambers and subsequent melting ground ice, although more detailed geomorphic observations are necessary to conclude this hypothesis.
- The regions of AHO-dominant chaos terrains near Cydonia Mensae, Nepenthes Mensae, and Aeolis Mensae correlate with the suggested regions of upwelling groundwater on Hesperian Mars [66]. This further implies that the water source that formed the AHO-dominant chaos terrains at the dichotomy boundary might be remnant frozen groundwater.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leask, H.J.; Wilson, L.; Mitchell, K.L. Formation of Aromatum Chaos, Mars: Morphological Development as a Result of Volcano-Ice Interactions. J. Geophys. Res. E Planets 2006, 111, E08071. [Google Scholar] [CrossRef] [Green Version]
- Meresse, S.; Costard, F.; Mangold, N.; Masson, P.; Neukum, G. Formation and Evolution of the Chaotic Terrains by Subsidence and Magmatism: Hydraotes Chaos, Mars. Icarus 2008, 194, 487–500. [Google Scholar] [CrossRef]
- Collins, G.; Nimmo, F. Chaotic Terrain on Europa. In Europa; University of Arizona Press: Tucson, AZ, USA, 2009; pp. 259–281. [Google Scholar]
- Roda, M.; Kleinhans, M.G.; Zegers, T.E.; Oosthoek, J.H.P. Catastrophic Ice Lake Collapse in Aram Chaos, Mars. Icarus 2014, 236, 104–121. [Google Scholar] [CrossRef] [Green Version]
- Luzzi, E.; Rossi, A.P.; Pozzobon, R. Confined Channels and Collapse Features in Arsinoes and Pyrrhae Chaos (Mars): Hints for a Volcano-Tectonic Origin. In Proceedings of the 21st European Geosciences Union General Assembly, Vienna, Austria, 7–12 April 2019. [Google Scholar]
- Luzzi, E.; Rossi, A.P.; Carli, C.; Altieri, F. Tectono-Magmatic, Sedimentary, and Hydrothermal History of Arsinoes and Pyrrhae Chaos, Mars. J. Geophys. Res. Planets 2020, 125, e2019JE006341. [Google Scholar] [CrossRef]
- Luzzi, E.; Rossi, A.P.; Massironi, M.; Pozzobon, R.; Corti, G.; Maestrelli, D. Caldera Collapse as the Trigger of Chaos and Fractured Craters on the Moon and Mars. Geophys. Res. Lett. 2021, 48, e2021GL092436. [Google Scholar] [CrossRef]
- Skjetne, H.L.; Singer, K.N.; Hynek, B.M.; Knight, K.I.; Schenk, P.M.; Olkin, C.B.; White, O.L.; Bertrand, T.; Runyon, K.D.; McKinnon, W.B.; et al. Morphological Comparison of Blocks in Chaos Terrains on Pluto, Europa, and Mars. Icarus 2021, 356, 113866. [Google Scholar] [CrossRef]
- Rodriguez, J.A.P.; Leonard, G.J.; Kargel, J.S.; Domingue, D.; Berman, D.C.; Banks, M.; Zarroca, M.; Linares, R.; Marchi, S.; Baker, V.R.; et al. The Chaotic Terrains of Mercury Reveal a History of Planetary Volatile Retention and Loss in the Innermost Solar System. Sci. Rep. 2020, 10, 4737. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, G.B.M. Chaotic Terrain (Mars). In Encyclopedia of Planetary Landforms; Springer: New York, NY, USA, 2014; pp. 1–6. ISBN 9781461492139. [Google Scholar]
- Warner, N.H.; Gupta, S.; Kim, J.R.; Muller, J.P.; Le Corre, L.; Morley, J.; Lin, S.Y.; McGonigle, C. Constraints on the Origin and Evolution of Iani Chaos, Mars. J. Geophys. Res. E Planets 2011, 116, E06003. [Google Scholar] [CrossRef] [Green Version]
- Sharp, R.P. Mars: Fretted and Chaotic Terrains. J. Geophys. Res. 1973, 78, 4073–4083. [Google Scholar] [CrossRef] [Green Version]
- Zegers, T.E.; Oosthoek, J.H.P.; Rossi, A.P.; Blom, J.K.; Schumacher, S. Melt and Collapse of Buried Water Ice: An Alternative Hypothesis for the Formation of Chaotic Terrains on Mars. Earth Planet. Sci. Lett. 2010, 297, 496–504. [Google Scholar] [CrossRef]
- Bamberg, M.; Jaumann, R.; Asche, H.; Kneissl, T.; Michael, G.G. Floor-Fractured Craters on Mars—Observations and Origin. Planet. Space Sci. 2014, 98, 146–162. [Google Scholar] [CrossRef]
- Rossi, A.P.; Huvenne, V.A.; Henriet, J.P.; Wagner, R.; Hauber, E.; Chicarro, A.; Di Lorenzo, S.; Neukum, G.; HRSC Co-Investigator Team. A Buried Earth Analogue to Martian Chaotic Terrains. In Proceedings of the 37th Annual Lunar and Planetary Science Conference, League City, TX, USA, 13–17 March 2006; p. 1573. [Google Scholar]
- Rodriguez, J.A.P.; Sasaki, S.; Kuzmin, R.O.; Dohm, J.M.; Tanaka, K.L.; Miyamoto, H.; Kurita, K.; Komatsu, G.; Fairén, A.G.; Ferris, J.C. Outflow Channel Sources, Reactivation, and Chaos Formation, Xanthe Terra, Mars. Icarus 2005, 175, 36–57. [Google Scholar] [CrossRef]
- Rodriguez, J.A.P.; Kargel, J.; Crown, D.A.; Bleamaster, L.F.; Tanaka, K.L.; Baker, V.; Miyamoto, H.; Dohm, J.M.; Sasaki, S.; Komatsu, G. Headward Growth of Chasmata by Volatile Outbursts, Collapse, and Drainage: Evidence from Ganges Chaos, Mars. Geophys. Res. Lett. 2006, 33, 2–6. [Google Scholar] [CrossRef]
- Kargel, J.S.; Furfaro, R.; Prieto-Ballesteros, O.; Rodriguez, J.A.P.; Montgomery, D.R.; Gillespie, A.R.; Marion, G.M.; Wood, S.E. Martian Hydrogeology Sustained by Thermally Insulating Gas and Salt Hydrates. Geology 2007, 35, 975–978. [Google Scholar] [CrossRef]
- Chapman, M.G.; Tanaka, K.L. Related Magma-Ice Interactions: Possible Origins of Chasmata, Chaos, and Surface Materials in Xanthe, Margaritifer, Meridiani Terrae, Mars. Icarus 2002, 155, 324–339. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, G.; Kargel, J.S.; Baker, V.R.; Strom, R.G.; Ori, G.G.; Mosangini, C.; Tanaka, K.L. A Chaotic Terrain Formation Hypothesis: Explosive Outgas and Outlow by Dissociation of Clathrate on Mars. In Proceedings of the 31st Annual Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 2000. [Google Scholar]
- Coleman, N.M. Martian Megaflood-Triggered Chaos Formation, Revealing Groundwater Depth, Cryosphere Thickness, and Crustal Heat Flux. J. Geophys. Res. 2005, 110, E12S20. [Google Scholar] [CrossRef] [Green Version]
- Korteniemi, J.; Aittola, M.; Lahtela, H.; Öhman, T.; Raitala, J. Martian Floor-Fractured Craters vs. Craters with Irregular Depressions. In Proceedings of the 37th Annual Lunar and Planetary Science Conference, League City, TX, USA, 13–17 March 2006; p. 2145. [Google Scholar]
- Korteniemi, J.; Aittola, M.; Öhman, T.; Raitala, J. Floor-Fractured Craters on the Terrestrial Planets—The Martian Perspective. In Proceedings of the 40th ESLAB Symposium—First International Conference on Impact Cratering in the Solar System, Noordwijk, The Netherlands, 8–12 May 2006; pp. 193–198. [Google Scholar]
- Tanaka, K.L.; Skinner, J.A.; Dohm, J.M.; Irwin, R.P.; Kolb, E.J.; Fortezzo, C.M.; Platz, T.; Michael, G.G.; Hare, T.M. Geologic Map of Mars: U.S. Geological Survey Scientific Investigations Map 3292; United States Geological Survey: Reston, VA, USA, 2014. [CrossRef]
- Stepinski, T.F.; Ghosh, S.; Vilalta, R. Automatic Recognition of Landforms on Mars Using Terrain Segmentation and Classification. In Proceedings of the International Conference on Discovery Science, Barcelona, Spain, 7–10 October 2006; pp. 255–266. [Google Scholar]
- Yamamoto, S.; Matsunaga, T.; Nakamura, R.; Sekine, Y.; Hirata, N.; Yamaguchi, Y. Rotational Pixel Swapping Method for Detection of Circular Features in Binary Images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 710–723. [Google Scholar] [CrossRef]
- Vamshi, G.T.; Martha, T.R.; Vinod Kumar, K. An Object-Based Classification Method for Automatic Detection of Lunar Impact Craters from Topographic Data. Adv. Sp. Res. 2016, 57, 1978–1988. [Google Scholar] [CrossRef]
- Palafox, L.F.; Hamilton, C.W.; Scheidt, S.P.; Alvarez, A.M. Automated Detection of Geological Landforms on Mars Using Convolutional Neural Networks. Comput. Geosci. 2017, 101, 48–56. [Google Scholar] [CrossRef]
- Cambioni, S.; Bennett, C.A.; Walsh, K.J.; DellaGiustina, D.N.; Golish, D.R.; Becker, K.J.; Lauretta, D.S. A Search for Smooth Terrains on Asteroid (101955) Bennu Using Machine Learning. In Proceedings of the EPSC-DPS Joint Meeting 2019, Geneva, Switzerland, 15–20 September 2019; p. EPSC-DPS2019. [Google Scholar]
- Komatsu, G.; Ori, G.G.; Cardinale, M.; Dohm, J.M.; Baker, V.R.; Vaz, D.A.; Ishimaru, R.; Namiki, N.; Matsui, T. Roles of Methane and Carbon Dioxide in Geological Processes on Mars. Planet. Space Sci. 2011, 59, 169–181. [Google Scholar] [CrossRef]
- Wilhelm, T.; Geis, M.; Püttschneider, J.; Sievernich, T.; Weber, T.; Wohlfarth, K.; Wöhler, C. DoMars16k: A Diverse Dataset for Weakly Supervised Geomorphologic Analysis on Mars. Remote Sens. 2020, 12, 3981. [Google Scholar] [CrossRef]
- Pardo-Igúzquiza, E.; Dowd, P.A.; Naor, R. Automatic Mapping and Spatial Analysis of High Spatial Resolution Closed Terrain Depressions and Mounds on Martian Landscapes. Icarus 2021, 369, 114632. [Google Scholar] [CrossRef]
- Nodjoumi, G.; Pozzobon, R.; Rossi, A.P. Deep Learning Object Detection for Mapping Cave Candidates on Mars: Building up the Mars Global Cave Candidate Catalog (MGC3). In Proceedings of the 52th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 15–19 March 2021; p. 1316. [Google Scholar]
- Rubanenko, L.; Perez-Lopez, S.; Schull, J.; Lapotre, M.G.A. Automatic Detection and Segmentation of Barchan Dunes on Mars and Earth Using a Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9364–9371. [Google Scholar] [CrossRef]
- Rajaneesh, A.; Vishnu, C.L.; Oommen, T.; Rajesh, V.J.; Sajinkumar, K.S. Machine Learning as a Tool to Classify Extra-Terrestrial Landslides: A Dossier from Valles Marineris, Mars. Icarus 2022, 376, 114886. [Google Scholar] [CrossRef]
- Wagstaff, K.; Lu, S.; Dunkel, E.; Grimes, K.; Zhao, B.; Cai, J.; Cole, S.B.; Doran, G.; Francis, R.; Lee, J.; et al. Mars Image Content Classification: Three Years of Nasa Deployment and Recent Advances. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 2–9 February 2021; Volume 35, pp. 15204–15213. [Google Scholar]
- Nagle-McNaughton, T.P.; Scuderi, L.A.; Erickson, N. Squeezing Data from a Rock: Machine Learning for Martian Science. Geosciences 2022, 12, 248. [Google Scholar] [CrossRef]
- Plebani, E.; Ehlmann, B.L.; Leask, E.K.; Fox, V.K.; Dundar, M.M. A Machine Learning Toolkit for CRISM Image Analysis. Icarus 2022, 376, 114849. [Google Scholar] [CrossRef]
- Silburt, A.; Ali-Dib, M.; Zhu, C.; Jackson, A.; Valencia, D.; Kissin, Y.; Tamayo, D.; Menou, K. Lunar Crater Identification via Deep Learning. Icarus 2019, 317, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Gichu, R.; Ogohara, K. Segmentation of Dust Storm Areas on Mars Images Using Principal Component Analysis and Neural Network. Prog. Earth Planet. Sci. 2019, 6, 19. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Malin, M.C.; Bell, J.F.; Cantor, B.A.; Caplinger, M.A.; Calvin, W.M.; Clancy, R.T.; Edgett, K.S.; Edwards, L.; Haberle, R.M.; James, P.B.; et al. Context Camera Investigation on Board the Mars Reconnaissance Orbiter. J. Geophys. Res. E Planets 2007, 112, E05S04. [Google Scholar] [CrossRef] [Green Version]
- Christensen, P.R.; Jakosky, B.M.; Kieffer, H.H.; Malin, M.C.; McSween, H.Y., Jr.; Nealson, K.; Mehall, G.; Silverman, S.; Ferry, S. The Thermal Emission Imaging System (THEMIS) Instrument for the Mars 2001 Orbiter. In Proceedings of the Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration, Houston, TX, USA, 2–4 October 1999; p. 28. [Google Scholar]
- Zuber, M.T.; Smith, D.E.; Solomon, S.C.; Muhleman, D.O.; Head, J.W.; Garvin, J.B.; Abshire, J.B.; Bufton, J.L. The Mars Observer Laser Altimeter Investigation. J. Geophys. Res. Planets 1992, 97, 7781–7797. [Google Scholar] [CrossRef]
- Neukum, G.; Jaumann, R. HRSC: The High Resolution Stereo Camera of Mars Express. In Mars Express: The Scientific Payload; European Space Agency: Paris, France, 2004; Volume 1240, pp. 17–35. [Google Scholar]
- Rodríguez, J.A.P.; Kargel, J.S.; Tanaka, K.L.; Crown, D.A.; Berman, D.C.; Fairén, A.G.; Baker, V.R.; Furfaro, R.; Candelaria, P.; Sasaki, S. Secondary Chaotic Terrain Formation in the Higher Outflow Channels of Southern Circum-Chryse, Mars. Icarus 2011, 213, 150–194. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- O’Shea, K.; Nash, R. An Introduction to Convolutional Neural Networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; ISBN 978-1-4939-3843-8. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Smith, S.L.; Kindermans, P.-J.; Ying, C.; Le, Q.V. Don’t Decay the Learning Rate, Increase the Batch Size. In Proceedings of the 6th International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Keskar, N.S.; Mudigere, D.; Nocedal, J.; Smelyanskiy, M.; Tang, P.T.P. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. In Proceedings of the 5th International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017. [Google Scholar]
- Christensen, P.R.; Engle, E.; Anwar, S.; Dickenshied, S.; Noss, D.; Gorelick, N.; Weiss-Malik, M. JMARS-a Planetary GIS. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 13–18 December 2009; p. IN22A-06. [Google Scholar]
- Hummel, R.A. Image Enhancement by Histogram Transformation. Comput. Graph. Image Process. 1977, 6, 184–185. [Google Scholar] [CrossRef]
- Troll, V.R.; Walter, T.R.; Schmincke, H.-U. Cyclic Caldera Collapse: Piston or Piecemeal Subsidence? Field and Experimental Evidence. Geology 2002, 30, 135. [Google Scholar] [CrossRef]
- Pedersen, G.B.M.; Head, J.W. Chaos Formation by Sublimation of Volatile-Rich Substrate: Evidence from Galaxias Chaos, Mars. Icarus 2011, 211, 316–329. [Google Scholar] [CrossRef]
- Cogswell, M.; Ahmed, F.; Girshick, R.; Zitnick, L.; Batra, D. Reducing Overfitting in Deep Networks by Decorrelating Representations. In Proceedings of the 4th International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Hayward, R.K.; Titus, T.N.; Michaels, T.I.; Fenton, L.K.; Colaprete, A.; Christensen, P.R. Aeolian Dunes as Ground Truth for Atmospheric Modeling on Mars. J. Geophys. Res. E Planets 2009, 114, E11012. [Google Scholar] [CrossRef] [Green Version]
- Carr, M.H.; Head, J.W. Oceans on Mars: An Assessment of the Observational Evidence and Possible Fate. J. Geophys. Res. E Planets 2003, 108, 5042. [Google Scholar] [CrossRef]
- Fergason, R.L.; Christensen, P.R.; Kieffer, H.H. High-Resolution Thermal Inertia Derived from the Thermal Emission Imaging System (THEMIS): Thermal Model and Applications. J. Geophys. Res. E Planets 2006, 111, E12004. [Google Scholar] [CrossRef]
- McGovern, P.J.; Solomon, S.C.; Smith, D.E.; Zuber, M.T.; Neumann, G.A.; Head, J.W., III; Phillips, R.J.; Simons, M. Gravity/Topography Admittances and Lithospheric Evolution on Mars: The Importance of Finite-Amplitude Topography. In Proceedings of the 32th Lunar and Planetary Science Conference, Houston, TX, USA, 12–16 March 2001; p. 1804. [Google Scholar]
- Rodriguez, J.A.P.; Kargel, J.S.; Baker, V.R.; Gulick, V.C.; Berman, D.C.; Fairén, A.G.; Linares, R.; Zarroca, M.; Yan, J.; Miyamoto, H.; et al. Martian Outflow Channels: How Did Their Source Aquifers Form, and Why Did They Drain so Rapidly? Sci. Rep. 2015, 5, 13404. [Google Scholar] [CrossRef] [Green Version]
- Davila, A.F.; Fairén, A.G.; Stokes, C.R.; Platz, T.; Rodriguez, A.P.; Lacelle, D.; Dohm, J.; Pollard, W. Evidence for Hesperian Glaciation along the Martian Dichotomy Boundary. Geology 2013, 41, 755–758. [Google Scholar] [CrossRef]
- Irwin, R.P.; Watters, T.R.; Howard, A.D.; Zimbelman, J.R. Sedimentary Resurfacing and Fretted Terrain Development along the Crustal Dichotomy Boundary, Aeolis Mensae, Mars. J. Geophys. Res. E Planets 2004, 109, E09011. [Google Scholar] [CrossRef] [Green Version]
- Andrews-Hanna, J.C.; Phillips, R.J.; Zuber, M.T. Meridiani Planum and the Global Hydrology of Mars. Nature 2007, 446, 163–166. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Mustard, J.F.; Murchie, S.L.; Bibring, J.P.; Meunier, A.; Fraeman, A.A.; Langevin, Y. Subsurface Water and Clay Mineral Formation during the Early History of Mars. Nature 2011, 479, 53–60. [Google Scholar] [CrossRef]
- Phillips, R.J.; Zuber, M.T.; Solomon, S.C.; Golombek, M.P.; Jakosky, B.M.; Banerdt, W.B.; Smith, D.E.; Williams, R.M.E.; Hynek, B.M.; Aharonson, O.; et al. Ancient Geodynamics and Global-Scale Hydrology on Mars. Science 2001, 291, 2587–2591. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.T.; Eke, V.R.; Massey, R.J.; Elphic, R.C.; Feldman, W.C.; Maurice, S.; Teodoro, L.F.A. Equatorial Locations of Water on Mars: Improved Resolution Maps Based on Mars Odyssey Neutron Spectrometer Data. Icarus 2018, 299, 148–160. [Google Scholar] [CrossRef] [Green Version]
- Giuranna, M.; Viscardy, S.; Daerden, F.; Neary, L.; Etiope, G.; Oehler, D.; Formisano, V.; Aronica, A.; Wolkenberg, P.; Aoki, S.; et al. Independent Confirmation of a Methane Spike on Mars and a Source Region East of Gale Crater. Nat. Geosci. 2019, 12, 326–332. [Google Scholar] [CrossRef]
- Andrews-Hanna, J.C.; Lewis, K.W. Early Mars Hydrology: 2. Hydrological Evolution in the Noachian and Hesperian Epochs. J. Geophys. Res. E Planets 2011, 116, E02007. [Google Scholar] [CrossRef]
- Shozaki, H.; Sekine, Y.; Guttenberg, N.; Komatsu, G. Recognition and Classification of Martian Chaos Terrains Using Imagery Machine Learning: A Global Distribution of Chaos Linked to Groundwater Circulation, Catastrophic Flooding, and Magmatism on Mars [Data Set]. Figshare 2022. [Google Scholar] [CrossRef]
Accuracy (%) | Precision (%) | Recall (%) | F-Measure | |
---|---|---|---|---|
(a) CTX classifier | A = 93.5 (σ = 0.7) | |||
AHO chaos blocks | PAHO = 92.1 (σ = 2.1) | RAHO = 85.2 (σ = 0.5) | FAHO = 88.5 (σ = 0.8) | |
AP chaos blocks | PAP = 94.1 (σ = 4.6) | RAP = 71.3 (σ = 13.8) | FAP = 80.7 (σ = 10.5) | |
Non-chaos surface features | Pnc = 93.9 (σ = 0.3) | Rnc = 99.0 (σ = 0.3) | Fnc = 96.4 (σ = 0.3) | |
(b) THEMIS classifier | A = 91.3 (σ = 2.6) | |||
AHO chaos blocks | PAHO = 88.8 (σ = 3.7) | RAHO = 80.4 (σ = 4.7) | FAHO = 84.4 (σ = 4.2) | |
AP chaos blocks | PAP = 90.3 (σ = 7.1) | RAP = 64.6 (σ = 21.5) | FAP = 72.7 (σ = 13.1) | |
Non-chaos surface features | Pnc = 92.4 (σ = 2.8) | Rnc = 98.2 (σ = 0.0) | Fnc = 95.2 (σ = 1.5) | |
(c) MOLA classifier | A = 88.5 (σ = 2.1) | |||
AHO chaos blocks | PAHO = 85.0 (σ = 5.7) | RAHO = 77.2 (σ = 8.6) | FAHO = 80.4 (σ = 3.9) | |
AP chaos blocks | PAP = 80.2 (σ = 9.0) | RAP = 63.9 (σ = 17.5) | FAP = 70.3 (σ = 14.4) | |
Non-chaos surface features | Pnc = 91.0 (σ = 3.0) | Rnc = 96.4 (σ = 1.8) | Fnc = 93.6 (σ = 0.8) |
Accuracy (%) | Precision (%) | Recall (%) | F-Measure | |
---|---|---|---|---|
CTX classifier | A = 87.2 (σ = 0.5) | |||
AHO chaos blocks | PAHO = 94.0 (σ = 1.5) | RAHO = 65.0 (σ = 2.7) | FAHO = 76.8 (σ = 1.6) | |
AP chaos blocks | PAP = 59.5 (σ = 4.9) | RAP = 76.5 (σ = 6.5) | FAP = 66.7 (σ = 4.4) | |
Non-chaos surface features | Pnc = 88.5 (σ = 0.6) | Rnc = 99.6 (σ = 0.6) | Fnc = 93.7 (σ = 0.4) | |
THEMIS classifier | A = 89.1 (σ = 0.3) | |||
AHO chaos blocks | PAHO = 92.2 (σ = 2.8) | RAHO = 71.7 (σ = 3.1) | FAHO = 80.5 (σ = 1.2) | |
AP chaos blocks | PAP = 83.5 (σ = 3.5) | RAP = 84.9 (σ = 2.9) | FAP = 84.1 (σ = 1.4) | |
Non-chaos surface features | Pnc = 88.6 (σ = 1.0) | Rnc = 98.3 (σ = 1.1) | Fnc = 93.2 (σ = 0.1) | |
MOLA classifier | A = 81.3 (σ = 1.4) | |||
AHO chaos blocks | PAHO = 84.6 (σ = 7.7) | RAHO = 52.5 (σ = 2.7) | FAHO = 64.5 (σ = 0.5) | |
AP chaos blocks | PAP = 31.8 (σ = 12.0) | RAP = 68.1 (σ = 8.1) | FAP = 42.6 (σ = 13.5) | |
Non-chaos surface features | Pnc = 88.8 (σ = 1.4) | Rnc = 96.3 (σ = 3.1) | Fnc = 92.4 (σ = 1.7) |
AHO Chaos Blocks | AP Chaos Blocks | Non-Chaos Surface Features | |
---|---|---|---|
CTX classifier | 1202 (882)/3148 | 325 (181)/3148 | 1621 (1296)/3148 |
THEMIS classifier | 1017 (683)/3148 | 350 (223)/3148 | 1781 (1498)/3148 |
MOLA classifier | 1513 (1067)/3148 | 178 (82)/3148 | 1457 (1103)/3148 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shozaki, H.; Sekine, Y.; Guttenberg, N.; Komatsu, G. Recognition and Classification of Martian Chaos Terrains Using Imagery Machine Learning: A Global Distribution of Chaos Linked to Groundwater Circulation, Catastrophic Flooding, and Magmatism on Mars. Remote Sens. 2022, 14, 3883. https://doi.org/10.3390/rs14163883
Shozaki H, Sekine Y, Guttenberg N, Komatsu G. Recognition and Classification of Martian Chaos Terrains Using Imagery Machine Learning: A Global Distribution of Chaos Linked to Groundwater Circulation, Catastrophic Flooding, and Magmatism on Mars. Remote Sensing. 2022; 14(16):3883. https://doi.org/10.3390/rs14163883
Chicago/Turabian StyleShozaki, Hiroki, Yasuhito Sekine, Nicholas Guttenberg, and Goro Komatsu. 2022. "Recognition and Classification of Martian Chaos Terrains Using Imagery Machine Learning: A Global Distribution of Chaos Linked to Groundwater Circulation, Catastrophic Flooding, and Magmatism on Mars" Remote Sensing 14, no. 16: 3883. https://doi.org/10.3390/rs14163883
APA StyleShozaki, H., Sekine, Y., Guttenberg, N., & Komatsu, G. (2022). Recognition and Classification of Martian Chaos Terrains Using Imagery Machine Learning: A Global Distribution of Chaos Linked to Groundwater Circulation, Catastrophic Flooding, and Magmatism on Mars. Remote Sensing, 14(16), 3883. https://doi.org/10.3390/rs14163883