Mapping Paddy Rice in Complex Landscapes with Landsat Time Series Data and Superpixel-Based Deep Learning Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Time Series Landsat Data
2.2.2. Sample Points
2.2.3. Agriculture Statistical Data
2.3. Proposed Superpixel-Based MLSTM-FCN for Mapping Paddy Rice
2.3.1. Creating Landsat Spectral Indices Time Series
2.3.2. Time Series Superpixel Segmentation
2.3.3. Superpixel-Wise Time Series and Sample Data Construction
2.3.4. MLSTM-FCN Model for Multivariate Time Series Classification
2.4. Experiment Design
2.4.1. Methods for Comparison
2.4.2. Model Training and Mapping
2.4.3. Performance Evaluation
3. Results
3.1. Performance Evaluation and Comparison with Agriculture Statistical Data
3.2. Visual Assessment of Paddy Rice Mapping Results
3.3. Interannual Spatial Distribution of Paddy Rice
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nie, L.; Peng, S. Rice Production in China. In Rice Production Worldwide; Chauhan, B.S., Jabran, K., Mahajan, G., Eds.; Springer International Publishing: Cham, Germany, 2017; pp. 33–52. ISBN 978-3-319-47514-1. [Google Scholar]
- Zhang, H.; He, B.; Xing, J.; Lu, M. Spatial and temporal patterns of rice planthopper populations in South and Southwest China. Comput. Electron. Agric. 2022, 194, 106750. [Google Scholar] [CrossRef]
- Cheng, J. Rice Planthoppers in the Past Half Century in China. In Rice Planthoppers: Ecology, Management, Socio Economics and Policy; Heong, K.L., Cheng, J., Escalada, M.M., Eds.; Zhejiang University Press: Hangzhou, China, 2015; pp. 1–32. ISBN1 978-94-017-9534-0. ISBN2 978-94-017-9535-7. [Google Scholar]
- Thenkabail, P.S. Remote Sensing of Global Croplands for Food Security; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9781420090109. [Google Scholar]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X. Evolution of regional to global paddy rice mapping methods: A review. ISPRS J. Photogramm. Remote Sens. 2016, 119, 214–227. [Google Scholar] [CrossRef] [Green Version]
- Bouman, B.; Humphreys, E.; Tuong, T.P.; Barker, R. Rice and Water. Adv. Agron. 2007, 92, 187–237. [Google Scholar] [CrossRef]
- Cao, J.; Cai, X.; Tan, J.; Cui, Y.; Xie, H.; Liu, F.; Yang, L.; Luo, Y. Mapping paddy rice using Landsat time series data in the Ganfu Plain irrigation system, Southern China, from 1988−2017. Int. J. Remote Sens. 2021, 42, 1556–1576. [Google Scholar] [CrossRef]
- Ciais, P.; Bala, G.; Canadell, J.; Chhabra, A.; DeFries, R.; Galloway, J.; Heimann, M.; Jones, C.; le Quéré, C.; Myneni, R.B.; et al. Carbon and Other Biogeochemical Cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change; Stocker, T., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 465–570. ISBN 9781107057999. [Google Scholar]
- Chen, C.; van Groenigen, K.J.; Yang, H.; Hungate, B.A.; Yang, B.; Tian, Y.; Chen, J.; Dong, W.; Huang, S.; Deng, A.; et al. Global warming and shifts in cropping systems together reduce China’s rice production. Glob. Food Secur. 2020, 24, 100359. [Google Scholar] [CrossRef]
- Di Martino, F.; Pedrycz, W.; Sessa, S. Spatiotemporal extended fuzzy C-means clustering algorithm for hotspots detection and prediction. Fuzzy Sets Syst. 2018, 340, 109–126. [Google Scholar] [CrossRef]
- Xiao, W.; Xu, S.; He, T. Mapping Paddy Rice with Sentinel-1/2 and Phenology-, Object-Based Algorithm—A Implementation in Hangjiahu Plain in China Using GEE Platform. Remote Sens. 2021, 13, 990. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.M.; Moore, B. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Nelson, A.; Setiyono, T.; Rala, A.; Quicho, E.; Raviz, J.; Abonete, P.; Maunahan, A.; Garcia, C.; Bhatti, H.; Villano, L.; et al. Towards an Operational SAR-Based Rice Monitoring System in Asia: Examples from 13 Demonstration Sites across Asia in the RIICE Project. Remote Sens. 2014, 6, 10773–10812. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, J.; Zhang, K.; Li, X.; She, B.; Wei, C.; Gao, J.; Song, X. Rice Fields Mapping in Fragmented Area Using Multi-Temporal HJ-1A/B CCD Images. Remote Sens. 2015, 7, 3467–3488. [Google Scholar] [CrossRef] [Green Version]
- Thorp, K.R.; Drajat, D. Deep machine learning with Sentinel satellite data to map paddy rice production stages across West Java, Indonesia. Remote Sens. Environ. 2021, 265, 112679. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.; Wu, L.; Liu, M.; Lin, Y.; Meng, Y.; Ye, L.; Zhang, Q.; Li, Y. Detection of paddy rice cropping systems in southern China with time series Landsat images and phenology-based algorithms. GIScience Remote Sens. 2021, 58, 733–755. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Wagner, W. European Rice Cropland Mapping with Sentinel-1 Data: The Mediterranean Region Case Study. Water 2017, 9, 392. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Gruber, A.; Wagner, W. Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data. Remote Sens. Lett. 2016, 7, 1209–1218. [Google Scholar] [CrossRef]
- Bazzi, H.; Baghdadi, N.; El Hajj, M.; Zribi, M.; Minh, D.H.T.; Ndikumana, E.; Courault, D.; Belhouchette, H. Mapping Paddy Rice Using Sentinel-1 SAR Time Series in Camargue, France. Remote Sens. 2019, 11, 887. [Google Scholar] [CrossRef] [Green Version]
- Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Shen, S.; Li, B.; Le Toan, T.; He, W. Rice Mapping and Monitoring Using ENVISAT ASAR Data. IEEE Geosci. Remote Sens. Lett. 2008, 5, 108–112. [Google Scholar] [CrossRef]
- Boschetti, M.; Busetto, L.; Manfron, G.; Laborte, A.; Asilo, S.; Pazhanivelan, S.; Nelson, A.D. PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series. Remote Sens. Environ. 2017, 194, 347–365. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Kou, W.L.; Qin, Y.; Zhang, G.; Li, L.; Jin, C.; Zhou, Y.; Wang, J.; Biradar, C.M.; et al. Tracking the dynamics of paddy rice planting area in 1986-2010 through time series Landsat images and phenology-based algorithms. Remote Sens. Environ. 2015, 160, 99–113. [Google Scholar] [CrossRef]
- Zhang, G.; Xiao, X.; Dong, J.; Kou, W.L.; Jin, C.; Qin, Y.; Zhou, Y.; Wang, J.; Menarguez, M.A.; Biradar, C.M. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS J. Photogramm. Remote Sens. 2015, 106, 157–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; Huang, J. Monitoring Spatio-Temporal Distribution of Rice Planting Area in the Yangtze River Delta Region Using MODIS Images. Remote Sens. 2015, 7, 8883–8905. [Google Scholar] [CrossRef] [Green Version]
- Kontgis, C.; Schneider, A.; Ozdogan, M. Mapping rice paddy extent and intensification in the Vietnamese Mekong River Delta with dense time stacks of Landsat data. Remote Sens. Environ. 2015, 169, 255–269. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, H.; Wang, G.; Sun, H.; Fu, J. Mapping Paddy Rice Using a Convolutional Neural Network (CNN) with Landsat 8 Datasets in the Dongting Lake Area, China. Remote Sens. 2018, 10, 1840. [Google Scholar] [CrossRef] [Green Version]
- Qiu, B.; Lu, D.; Tang, Z.; Chen, C.; Zou, F. Automatic and adaptive paddy rice mapping using Landsat images: Case study in Songnen Plain in Northeast China. Sci. Total. Environ. 2017, 598, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xiao, X.; Biradar, C.M.; Dong, J.; Qin, Y.; Menarguez, M.A.; Zhou, Y.; Zhang, Y.; Jin, C.; Wang, J.; et al. Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015. Sci. Total. Environ. 2017, 579, 82–92. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Salas, W.; Moore III, B.; Li, C.; He, L.; Zhao, R. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data. Int. J. Remote Sens. 2002, 23, 3009–3022. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Bie, C.A.J.M.D.; Ali, A.; Smaling, E.M.A.; Chu, T.H. Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis. Int. J. Remote Sens. 2012, 33, 415–434. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, B.; Ponce-Campos, G.E.; Zhang, M.; Chang, S.; Tian, F. Mapping up-to-date paddy rice extent at 10 M resolution in China through the integration of optical and synthetic aperture radar images. Remote Sens. 2018, 10, 1200. [Google Scholar] [CrossRef] [Green Version]
- Clauss, K.; Yan, H.; Kuenzer, C. Mapping Paddy Rice in China in 2002, 2005, 2010 and 2014 with MODIS Time Series. Remote Sens. 2016, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Im, J.; Park, S.; Yoo, C.; Han, H.; Rhee, J. Classification and Mapping of Paddy Rice by Combining Landsat and SAR Time Series Data. Remote Sens. 2018, 10, 447. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Chen, Z.; Jiang, H.; Jing, W.; Sun, L.; Feng, M. Evaluation of Three Deep Learning Models for Early Crop Classification Using Sentinel-1A Imagery Time Series—A Case Study in Zhanjiang, China. Remote Sens. 2019, 11, 2673. [Google Scholar] [CrossRef] [Green Version]
- Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Luo, J.; Feng, L.; Yang, Y.; Chen, Y.; Wu, W. Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data. GIScience Remote Sens. 2019, 56, 1170–1191. [Google Scholar] [CrossRef]
- Du, Z.; Yang, J.; Ou, C.; Zhang, T. Smallholder Crop Area Mapped with a Semantic Segmentation Deep Learning Method. Remote Sens. 2019, 11, 888. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Liu, X.; Ding, C.; Liu, S.; Wu, C.; Wu, L. Mapping Rice Paddies in Complex Landscapes with Convolutional Neural Networks and Phenological Metrics. GIScience Remote Sens. 2020, 57, 37–48. [Google Scholar] [CrossRef]
- Bargiel, D. A new method for crop classification combining time series of radar images and crop phenology information. Remote Sens. Environ. 2017, 198, 369–383. [Google Scholar] [CrossRef]
- Chockalingam, J.; Mondal, S. Fractal-Based Pattern Extraction from Time-Series NDVI Data for Feature Identification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5258–5264. [Google Scholar] [CrossRef]
- Karim, F.; Majumdar, S.; Darabi, H.; Harford, S. Multivariate LSTM-FCNs for time series classification. Neural Netw. 2019, 116, 237–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- National Geomatics Center of China. National Platform for Common Geospatial Information Services. Available online: https://www.tianditu.gov.cn/ (accessed on 20 October 2021).
- Zhu, Z.; Woodcock, C.E.; Holden, C.; Yang, Z. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sens. Environ. 2015, 162, 67–83. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Zhou, Y.; He, B.; Liu, X.; Zhang, H.; Feng, S. Improving Land Cover Change Detection and Classification with BRDF Correction and Spatial Feature Extraction Using Landsat Time Series: A Case of Urbanization in Tianjin, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4166–4177. [Google Scholar] [CrossRef]
- Onojeghuo, A.O.; Blackburn, G.A.; Wang, Q.; Atkinson, P.M.; Kindred, D.; Miao, Y. Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series. GIScience Remote Sens. 2018, 55, 659–677. [Google Scholar] [CrossRef] [Green Version]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- van den Bergh, M.; Boix, X.; Roig, G.; Capitani, B.D.; van Gool, L. SEEDS: Superpixels Extracted via Energy-Driven Sampling. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin, Germany, 2012; pp. 13–26. [Google Scholar]
- Achanta, R.; Susstrunk, S. Superpixels and Polygons Using Simple Non-iterative Clustering. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 4895–4904, ISBN 978-1-5386-0457-1. [Google Scholar]
- Jampani, V.; Sun, D.; Liu, M.-Y.; Yang, M.-H.; Kautz, J. Superpixel Sampling Networks. In Computer Vision—ECCV 2018, Proceedings of the Part VII: 15th European Conference, Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Cham, Switzerland, 2018; pp. 363–380. ISBN 9783030012335. [Google Scholar]
- Li, H.; Du, T. Multivariate time-series clustering based on component relationship networks. Expert Syst. Appl. 2021, 173, 114649. [Google Scholar] [CrossRef]
- Bandara Senanayaka, J.; Thilanka Morawaliyadda, D.; Tharuka Senarath, S.; Indika Godaliyadda, R.; Parakrama Ekanayake, M. Adaptive Centroid Placement Based SNIC for Superpixel Segmentation. In Proceedings of the 2020 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 28–30 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 242–247, ISBN 978-1-7281-9975-7. [Google Scholar]
- Fang, L.; Li, S.; Duan, W.; Ren, J.; Benediktsson, J.A. Classification of Hyperspectral Images by Exploiting Spectral–Spatial Information of Superpixel via Multiple Kernels. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6663–6674. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Trottier, L.; Giguere, P.; Chaib-draa, B. Parametric Exponential Linear Unit for Deep Convolutional Neural Networks. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM Fully Convolutional Networks for Time Series Classification. IEEE Access 2018, 6, 1662–1669. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.; Chen, L.; Pan, Z.; Xing, J.; Li, Z.; Yuan, Z. Geospatial Contextual Attention Mechanism for Automatic and Fast Airport Detection in SAR Imagery. IEEE Access 2020, 8, 173627–173640. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. National Data. Available online: https://data.stats.gov.cn/english/easyquery.htm?cn=E0103 (accessed on 21 December 2020).
- Xin, L.; Liu, X. Changes of multiple cropping in double cropping rice area of southern China and its policy implications. J. Nat. Resour. 2009, 24, 58–65. [Google Scholar]
Model | Hyperparameter | Candidate Values |
---|---|---|
MLSTM-FCN | LSTM hidden size | 4, 8, 16, 64, 128 |
TC kernel size 1 | 3, 5, 8 | |
TC filters 2 | 8, 16, 32, 64, 128 | |
epoch | 150, 200 | |
RF | n_estimators | [1, 10, 100] 3 |
max_depth | [5, 1, 15] |
Year | Pixel MLSTM-FCN | Superpixel MLSTM-FCN | Superpixel RF | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OA | PA | UA | kappa | OA | PA | UA | kappa | OA | PA | UA | kappa | |
2000 | 0.9577 | 0.9259 | 0.9288 | 0.8738 | 0.9640 | 0.9615 | 0.9170 | 0.9124 | 0.9612 | 0.9208 | 0.9436 | 0.9042 |
2001 | 0.9562 | 0.9219 | 0.9371 | 0.8807 | 0.9552 | 0.9411 | 0.9187 | 0.8950 | 0.9587 | 0.9393 | 0.9222 | 0.9004 |
2002 | 0.9453 | 0.9130 | 0.9032 | 0.8556 | 0.9547 | 0.9329 | 0.9111 | 0.8887 | 0.9563 | 0.9435 | 0.9125 | 0.8946 |
2003 | 0.9691 | 0.9549 | 0.9478 | 0.8861 | 0.9712 | 0.9549 | 0.9544 | 0.9333 | 0.9642 | 0.9438 | 0.9356 | 0.9131 |
2004 | 0.9698 | 0.9656 | 0.9332 | 0.8890 | 0.9674 | 0.9615 | 0.9258 | 0.9201 | 0.9581 | 0.9304 | 0.9275 | 0.8981 |
2005 | 0.9716 | 0.9551 | 0.9463 | 0.9132 | 0.9701 | 0.9572 | 0.9381 | 0.9254 | 0.9685 | 0.9652 | 0.9321 | 0.9247 |
2006 | 0.9626 | 0.9484 | 0.9294 | 0.9012 | 0.9668 | 0.9564 | 0.9290 | 0.9180 | 0.9564 | 0.9304 | 0.9249 | 0.8943 |
2007 | 0.9662 | 0.9716 | 0.9164 | 0.8952 | 0.9617 | 0.9681 | 0.9133 | 0.9109 | 0.9618 | 0.9435 | 0.9261 | 0.9068 |
2008 | 0.9735 | 0.9624 | 0.9490 | 0.9359 | 0.9710 | 0.9611 | 0.9406 | 0.9294 | 0.9735 | 0.9522 | 0.9589 | 0.9356 |
2009 | 0.9549 | 0.9327 | 0.9157 | 0.8677 | 0.9609 | 0.9416 | 0.9264 | 0.9049 | 0.9566 | 0.9213 | 0.9286 | 0.8937 |
2010 | 0.9764 | 0.9600 | 0.9593 | 0.9139 | 0.9701 | 0.9620 | 0.9397 | 0.9285 | 0.9598 | 0.9346 | 0.9274 | 0.9022 |
2011 | 0.9642 | 0.9449 | 0.9357 | 0.9026 | 0.9721 | 0.9584 | 0.9491 | 0.9332 | 0.9603 | 0.9263 | 0.9369 | 0.9024 |
2012 | 0.9665 | 0.9656 | 0.9218 | 0.9072 | 0.9680 | 0.9656 | 0.9244 | 0.9214 | 0.9661 | 0.9522 | 0.9345 | 0.9180 |
2013 | 0.9681 | 0.9476 | 0.9468 | 0.9138 | 0.9667 | 0.9449 | 0.9463 | 0.9210 | 0.9600 | 0.9261 | 0.9371 | 0.9018 |
2014 | 0.9527 | 0.9238 | 0.9134 | 0.8787 | 0.9582 | 0.9323 | 0.9249 | 0.8977 | 0.9561 | 0.9350 | 0.9203 | 0.8944 |
2015 | 0.9682 | 0.9403 | 0.9496 | 0.9125 | 0.9655 | 0.9322 | 0.9504 | 0.9149 | 0.9626 | 0.9350 | 0.9368 | 0.9089 |
2016 | 0.9557 | 0.9360 | 0.9149 | 0.8907 | 0.9626 | 0.9572 | 0.9185 | 0.9101 | 0.9663 | 0.9435 | 0.9408 | 0.9178 |
2017 | 0.9656 | 0.9355 | 0.9452 | 0.8999 | 0.9577 | 0.9065 | 0.9404 | 0.8917 | 0.9587 | 0.9261 | 0.9318 | 0.8992 |
2018 | 0.9637 | 0.9394 | 0.9461 | 0.9005 | 0.9638 | 0.9387 | 0.9394 | 0.9117 | 0.9610 | 0.9306 | 0.9403 | 0.9060 |
2019 | 0.9650 | 0.9393 | 0.9432 | 0.9056 | 0.9636 | 0.9398 | 0.9384 | 0.9123 | 0.9572 | 0.9291 | 0.9254 | 0.8954 |
2020 | 0.9620 | 0.9234 | 0.9417 | 0.8938 | 0.9652 | 0.9304 | 0.9471 | 0.9129 | 0.9595 | 0.9261 | 0.9360 | 0.9018 |
Mean | 0.9636 | 0.9432 | 0.9345 | 0.8961 | 0.9646 | 0.9478 | 0.9330 | 0.9140 | 0.9611 | 0.9360 | 0.9323 | 0.9054 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; He, B.; Xing, J. Mapping Paddy Rice in Complex Landscapes with Landsat Time Series Data and Superpixel-Based Deep Learning Method. Remote Sens. 2022, 14, 3721. https://doi.org/10.3390/rs14153721
Zhang H, He B, Xing J. Mapping Paddy Rice in Complex Landscapes with Landsat Time Series Data and Superpixel-Based Deep Learning Method. Remote Sensing. 2022; 14(15):3721. https://doi.org/10.3390/rs14153721
Chicago/Turabian StyleZhang, Hongguo, Binbin He, and Jin Xing. 2022. "Mapping Paddy Rice in Complex Landscapes with Landsat Time Series Data and Superpixel-Based Deep Learning Method" Remote Sensing 14, no. 15: 3721. https://doi.org/10.3390/rs14153721
APA StyleZhang, H., He, B., & Xing, J. (2022). Mapping Paddy Rice in Complex Landscapes with Landsat Time Series Data and Superpixel-Based Deep Learning Method. Remote Sensing, 14(15), 3721. https://doi.org/10.3390/rs14153721