A Novel Method to Simultaneously Measure Leaf Gas Exchange and Water Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
VPD (Leaf 1) | VPD (Leaf 2) | ||||
---|---|---|---|---|---|
Wavelength | R2 | RMSE (g m−2) | Wavelength | R2 | RMSE (g m−2) |
1880 | 0.983 | 0.409 | 1595 | 0.989 | 0.274 |
1935 | 0.983 | 0.415 | 1615 | 0.988 | 0.285 |
1840 | 0.981 | 0.431 | 1870 | 0.988 | 0.287 |
1550 | 0.981 | 0.432 | 1610 | 0.988 | 0.289 |
1555 | 0.981 | 0.434 | 1555 | 0.987 | 0.297 |
1845 | 0.979 | 0.452 | 1580 | 0.987 | 0.300 |
1850 | 0.979 | 0.455 | 1560 | 0.987 | 0.300 |
1815 | 0.979 | 0.459 | 1585 | 0.987 | 0.300 |
1560 | 0.978 | 0.461 | 1575 | 0.986 | 0.302 |
1855 | 0.978 | 0.468 | 1625 | 0.986 | 0.307 |
CO2 (Leaf 3) | Light (Leaf 4) | ||||
Wavelength | R2 | RMSE (g m−2) | Wavelength | R2 | RMSE (g m−2) |
1610 | 0.999 | 0.356 | 1860 | 0.993 | 0.272 |
1550 | 0.999 | 0.363 | 1855 | 0.993 | 0.275 |
1575 | 0.999 | 0.385 | 1875 | 0.993 | 0.279 |
1865 | 0.999 | 0.386 | 1760 | 0.993 | 0.291 |
1625 | 0.999 | 0.388 | 1835 | 0.992 | 0.296 |
1620 | 0.999 | 0.389 | 1805 | 0.992 | 0.297 |
1600 | 0.999 | 0.390 | 1840 | 0.992 | 0.298 |
1875 | 0.999 | 0.391 | 1845 | 0.992 | 0.304 |
1835 | 0.999 | 0.393 | 1825 | 0.992 | 0.309 |
1850 | 0.999 | 0.398 | 1865 | 0.991 | 0.311 |
VPD (Leaf 1) | VPD (Leaf 2) | ||||||
---|---|---|---|---|---|---|---|
γ1 | γ2 | R2 | RMSE (g m−2) | γ1 | γ2 | R2 | RMSE (g m−2) |
1935 | 1690 | 0.938 | 0.783 | 1940 | 1715 | 0.867 | 0.949 |
1935 | 1750 | 0.935 | 0.802 | 1950 | 1715 | 0.857 | 0.982 |
1935 | 1730 | 0.929 | 0.838 | 1950 | 1735 | 0.855 | 0.989 |
1935 | 1720 | 0.927 | 0.850 | 1950 | 1740 | 0.839 | 1.044 |
1935 | 1660 | 0.921 | 0.885 | 1950 | 1695 | 0.838 | 1.048 |
1935 | 1680 | 0.920 | 0.889 | 1940 | 1640 | 0.837 | 1.051 |
1935 | 1740 | 0.918 | 0.898 | 1950 | 1710 | 0.834 | 1.060 |
1935 | 1710 | 0.909 | 0.947 | 1940 | 1655 | 0.831 | 1.070 |
1935 | 1695 | 0.908 | 0.952 | 1940 | 1710 | 0.831 | 1.070 |
1935 | 1640 | 0.907 | 0.957 | 1940 | 1675 | 0.830 | 1.071 |
CO2 (Leaf 3) | Light (Leaf 4) | ||||||
γ1 | γ2 | R2 | RMSE (g m−2) | γ1 | γ2 | R2 | RMSE (g m−2) |
1890 | 1665 | 0.985 | 1.483 | 1950 | 1665 | 0.943 | 0.803 |
1880 | 1670 | 0.985 | 1.487 | 1950 | 1710 | 0.943 | 0.805 |
1880 | 1675 | 0.985 | 1.511 | 1950 | 1695 | 0.943 | 0.805 |
1880 | 1700 | 0.984 | 1.529 | 1950 | 1610 | 0.942 | 0.808 |
1890 | 1735 | 0.984 | 1.538 | 1950 | 1685 | 0.942 | 0.812 |
1890 | 1730 | 0.984 | 1.539 | 1950 | 1765 | 0.941 | 0.817 |
1890 | 1675 | 0.984 | 1.542 | 1950 | 1700 | 0.940 | 0.823 |
1880 | 1695 | 0.984 | 1.558 | 1945 | 1715 | 0.940 | 0.825 |
1870 | 1655 | 0.984 | 1.570 | 1945 | 1770 | 0.940 | 0.827 |
1890 | 1680 | 0.983 | 1.577 | 1915 | 1695 | 0.940 | 0.828 |
References
- Crafts, A.S.; Currier, H.B.; Stocking, C.R. Water in the physiology of plants. Water Physiol. Plants 1951, 4, 58. [Google Scholar]
- Lambers, H.; Oliveira, R.S. Plant water relations. In Plant Physiological Ecology; Springer: New York, NY, USA, 2019; pp. 187–263. [Google Scholar]
- Konings, A.G.; Rao, K.; Steele-Dunne, S.C. Macro to micro: Microwave remote sensing of plant water content for physiology and ecology. New Phytol. 2019, 223, 1166–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barigah, T.S.; Charrier, O.; Douris, M.; Bonhomme, M.; Herbette, S.; Ameglio, T.; Fichot, R.; Brignolas, F.; Cochard, H. Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Ann. Bot. 2013, 112, 1431–1437. [Google Scholar] [CrossRef]
- Blum, A. Plant water relations, plant stress and plant production. In Plant Breeding for Water-Limited Environments; Springer: New York, NY, USA, 2011; pp. 11–52. [Google Scholar]
- Rao, K.; Anderegg, W.R.L.; Sala, A.; Martinez-Vilalta, J.; Konings, A.G. Satellite-based vegetation optical depth as an indicator of drought-driven tree mortality. Remote Sens. Environ. 2019, 227, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Mccutchan, H.; Shackel, K.A. Stem-Water Potential as a Sensitive Indicator of Water-Stress in Prune Trees (Prunus domestica L. cv. French). J. Am. Soc. Hort. Sci. 1992, 117, 607–611. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, L.; Zweifel, R.; Kahmen, A. Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiol. 2018, 38, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Zweifel, R.; Item, H.; Hasler, R. Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees-Struct. Funct. 2000, 15, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Savage, M.J.; Wiebe, H.H.; Cass, A. In situ field measurement of leaf water potential using thermocouple psychrometers. Plant Physiol. 1983, 73, 609–613. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, S.A.; Al-Mulla, Y.A.; McCann, I.; AbuRumman, G.; Belhaj, M.; Zekri, S.; Al-Ismaili, A.; Rahman, S. Smart Monitoring, Sap-Flow, Stem-Psychrometer And Soil-Moisture Measurements Tools For Precision Irrigation And Water Saving Of Date Palm. Int. J. Agric. Biol. 2021, 26, 570–578. [Google Scholar]
- Feret, J.B.; Le Maire, G.; Jay, S.; Berveiller, D.; Bendoula, R.; Hmimina, G.; Cheraiet, A.; Oliveira, J.C.; Ponzoni, F.J.; Solanki, T.; et al. Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning. Remote Sens. Environ. 2019, 231, 110959. [Google Scholar] [CrossRef]
- Feret, J.B.; Francois, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Cheng, T.; Riaño, D.; Ustin, S.L. Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis. Remote Sens. Environ. 2014, 143, 39–53. [Google Scholar] [CrossRef]
- Penuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance water index WI (R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Browne, M.; Yardimci, N.T.; Scoffoni, C.; Jarrahi, M.; Sack, L. Prediction of leaf water potential and relative water content using terahertz radiation spectroscopy. Plant Direct 2020, 4, e00197. [Google Scholar] [CrossRef]
- Cao, Z.X.; Wang, Q.; Zheng, C.L. Best hyperspectral indices for tracing leaf water status as determined from leaf dehydration experiments. Ecol. Indic. 2015, 54, 96–107. [Google Scholar] [CrossRef]
- Junttila, S.; Hölttä, T.; Puttonen, E.; Katoh, M.; Vastaranta, M.; Kaartinen, H.; Holopainen, M.; Hyyppä, H. Terrestrial laser scanning intensity captures diurnal variation in leaf water potential. Remote Sens. Environ. 2021, 255, 112274. [Google Scholar] [CrossRef]
- Huck, C.W. New Trend in Instrumentation of NIR Spectroscopy—Miniaturization. In Near-Infrared Spectroscopy; Springer: New York, NY, USA, 2021; pp. 193–210. [Google Scholar]
- Junttila, S.; Hölttä, T.; Saarinen, N.; Kankare, V.; Yrttimaa, T.; Hyyppä, J.; Vastaranta, M. Close-range hyperspectral spectroscopy reveals leaf water content dynamics. Remote Sens. Environ. 2022, 277, 113071. [Google Scholar] [CrossRef]
- Hölttä, T.; Juurola, E.; Lindfors, L.; Porcar-Castell, A. Cavitation induced by a surfactant leads to a transient release of water stress and subsequent ‘run away’embolism in Scots pine (Pinus sylvestris) seedlings. J. Exp. Bot. 2012, 63, 1057–1067. [Google Scholar] [CrossRef]
- Matin, M.; Brown, J.H.; Ferguson, H. Leaf water potential, relative water content, and diffusive resistance as screening techniques for drought resistance in barley. Agron. J. 1989, 81, 100–105. [Google Scholar] [CrossRef]
- Tyree, M.; Hammel, H. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. J. Exp. Bot. 1972, 23, 267–282. [Google Scholar] [CrossRef]
- Drake, P.L.; Froend, R.H.; Franks, P.J. Smaller, faster stomata: Scaling of stomatal size, rate of response, and stomatal conductance. J. Exp. Bot. 2013, 64, 495–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weksler, S.; Rozenstein, O.; Haish, N.; Moshelion, M.; Walach, R.; Ben-Dor, E. A hyperspectral-physiological phenomics system: Measuring diurnal transpiration rates and diurnal reflectance. Remote Sens. 2020, 12, 1493. [Google Scholar] [CrossRef]
- Ullmann, I.; Lange, O.; Ziegler, H.; Ehleringer, J.; Schulze, E.-D.; Cowan, I. Diurnal courses of leaf conductance and transpiration of mistletoes and their hosts in Central Australia. Oecologia 1985, 67, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xie, Z.; Wang, Y.; Su, P.; An, L.; Gao, H. Effect of water stress on leaf photosynthesis, chlorophyll content, and growth of oriental lily. Russ. J. Plant Physiol. 2011, 58, 844–850. [Google Scholar] [CrossRef]
- Gersony, J.T.; Hochberg, U.; Rockwell, F.E.; Park, M.; Gauthier, P.P.; Holbrook, N.M. Leaf carbon export and nonstructural carbohydrates in relation to diurnal water dynamics in mature oak trees. Plant Physiol. 2020, 183, 1612–1621. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Wang, H.; Prentice, I.C.; Harrison, S.P.; Wright, I.J. Coordination of plant hydraulic and photosynthetic traits: Confronting optimality theory with field measurements. New Phytol. 2021, 232, 1286–1296. [Google Scholar] [CrossRef]
VPD Manipulation | |||
---|---|---|---|
Increment | VPD (Pa kPa−1) | CO2 (ppm) | Light (µmol m−2 s−1) |
1 | 5 | 400 | 1200 |
2 | 10 | 400 | 1200 |
3 | 15 | 400 | 1200 |
4 | 22 | 400 | 1200 |
5 | 32 | 400 | 1200 |
6 | 45 | 400 | 1200 |
CO2 Manipulation | |||
Increment | VPD (Pa kPa−1) | CO2 (ppm) | Light (µmol m−2 s−1) |
1 | 22 | 500 | 1200 |
2 | 22 | 350 | 1200 |
3 | 22 | 250 | 1200 |
4 | 22 | 150 | 1200 |
5 | 22 | 50 | 1200 |
Light Manipulation | |||
Increment | VPD (Pa kPa−1) | CO2 (ppm) | Light (µmol m−2 s−1) |
1 | 22 | 400 | 0 |
2 | 22 | 400 | 200 |
3 | 22 | 400 | 400 |
4 | 22 | 400 | 600 |
5 | 22 | 400 | 800 |
6 | 22 | 400 | 1000 |
7 | 22 | 400 | 1200 |
8 | 22 | 400 | 1400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junttila, S.; Hölttä, T.; Salmon, Y.; Filella, I.; Peñuelas, J. A Novel Method to Simultaneously Measure Leaf Gas Exchange and Water Content. Remote Sens. 2022, 14, 3693. https://doi.org/10.3390/rs14153693
Junttila S, Hölttä T, Salmon Y, Filella I, Peñuelas J. A Novel Method to Simultaneously Measure Leaf Gas Exchange and Water Content. Remote Sensing. 2022; 14(15):3693. https://doi.org/10.3390/rs14153693
Chicago/Turabian StyleJunttila, Samuli, Teemu Hölttä, Yann Salmon, Iolanda Filella, and Josep Peñuelas. 2022. "A Novel Method to Simultaneously Measure Leaf Gas Exchange and Water Content" Remote Sensing 14, no. 15: 3693. https://doi.org/10.3390/rs14153693
APA StyleJunttila, S., Hölttä, T., Salmon, Y., Filella, I., & Peñuelas, J. (2022). A Novel Method to Simultaneously Measure Leaf Gas Exchange and Water Content. Remote Sensing, 14(15), 3693. https://doi.org/10.3390/rs14153693