Translational Compensation Algorithm for Ballistic Targets in Midcourse Based on Template Matching
Abstract
:1. Introduction
2. Target Motion Model in the Middle of the Trajectory
3. Target Translation Compensation Based on Template Matching
4. Simulation and Discussion
4.1. Simulation and Analysis without Spectrum Aliasing
4.2. Simulation and Analysis with Spectrum Aliasing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, V.C. Advances in applications of radar micro-Doppler signatures. In Proceedings of the 2014 IEEE Conference on Antenna Measurements Applications (CAMA), Antibes, France, 16–19 November 2014. [Google Scholar] [CrossRef]
- Chen, V.C.; Li, F.; Ho, S.S.; Wechsler, H. Micro-Doppler effect in radar: Phenomenon, model, and simulation study. IEEE Trans. Aerosp. Electron. Syst. Trans. Aerosp. Electron. Syst. 2006, 42, 2–21. [Google Scholar] [CrossRef]
- Chen, V.C. Doppler signatures of radar backscattering from objects with micro-motions. IET Signal Process. 2008, 2, 291–300. [Google Scholar] [CrossRef]
- Gao, H.; Xie, L.; Wen, S.; Kuang, Y. Research on the influence of acceleration on micro-Doppler and its compensation. J. Astronaut. 2009, 30, 705–711. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, C.; Zhao, S.; Chen, B. Translational motion compensation of ballistic targets in midcourse based on 2D spectral vector. Transducer Microsyst. Technol. 2017, 36, 66–69. [Google Scholar]
- Gu, F.; Fu, M.; Liang, B.; Li, K.; Zhang, Q. Translational motion compensation and micro-Doppler feature extraction of space spinning targets. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1550–1554. [Google Scholar] [CrossRef]
- Li, J.; He, S.; Feng, C.; Wang, Y. Method for compensating translational motion of rotationally symmetric target based on local symmetry cancellation. J. Syst. Eng. Electron. 2017, 28, 36–39. [Google Scholar] [CrossRef]
- Feng, C.; Yang, Y.; Tong, N. Macro-motion compensation and micro-Doppler zooming by multi-level delayed and conjugated multiplication. In Proceedings of the 2012 Spring Congress on Engineering and Technology, Xi’an, China, 27–30 May 2012. [Google Scholar] [CrossRef]
- Wei, S.; Wang, J.; Sun, J.; Mao, S. A state space method for estimating the translational radial velocity of ballistic targets. J. Electron. Inf. Technol. 2013, 35, 413–418. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, C.; Dan, X. Micro-Doppler separation for target with rotating parts based on wavelet decomposition. In Proceedings of the 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 10–13 October 2016. [Google Scholar] [CrossRef]
- Xu, D.; Dong, H.; Feng, C.; Geng, Z. Translational motion compensation of ballistic target based on radon transform. In Proceedings of the 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December 2017. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Liu, F. Ballistic target translation compensation based on corner detection algorithm. In Proceedings of the 2021 IOP Conference Series: Earth and Environmental Science, Xi’an, China, 18–19 December 2020. [Google Scholar] [CrossRef]
- Han, L.; Tian, B.; Feng, C.; He, S. Translation compensation and resolution of ballistic target with precession. J. Beijing Univ. Aeronaut. Astronaut. 2019, 45, 1459–1466. [Google Scholar] [CrossRef]
- Chen, J.; Luo, S.; Cen, C.; Li, C.; Qi, J. Translation compensation of space targets via image quality. J. Spacecr. TT C Technol. 2017, 36, 014–018. [Google Scholar]
- Dong, L.; Zhan, M.; Liu, H.; Yong, L.; Liao, G. A robust translational motion compensation method for ISAR imaging based on keystone transform and fractional Fourier transform under low SNR environment. J. Beijing Univ. Aeronaut. Astronaut. 2017, 53, 2140–2156. [Google Scholar] [CrossRef]
- Guo, L.; Hu, Y.; Dong, X.; Li, M. Translation compensation and micro-motion parameter estimation of laser micro-Doppler effect. Acta Phys. Sin. Chin. Ed. 2018, 67, 150701. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, C.; Zhang, Y.; He, S. Translational motion compensation of space micromotion targets using regression network. IEEE Access 2019, 7, 155038–155047. [Google Scholar] [CrossRef]
- Zhang, W.; Li, K.; Jiang, W. Micro-motion frequency estimation of radar targets with complicated translations. AEUE Int. J. Electron. Commun. 2015, 69, 903–914. [Google Scholar] [CrossRef]
- Zhang, D.; Feng, C.; Zhang, Y.; Li, J. Translation compensation based on cycle subtracting of micro-Doppler curve. Appl. Mech. Mater. 2015, 742, 281–285. [Google Scholar] [CrossRef]
- Chen, J.; Xing, M.; Yu, H.; Liang, B.; Peng, J.; Sun, G. Motion compensation/autofocus in airborne synthetic aperture radar: A review. IEEE Geosci. Remote Sens. Mag. 2022, 10, 185–206. [Google Scholar] [CrossRef]
- Ma, L.; Liu, J.; Wang, T.; Li, Y.; Wang, X. Micro-Doppler characteristics of sliding-type scattering center on rotationally symmetric target. Sci. China Inf. Sci. 2011, 54, 1957–1967. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef]
- Dhillon, D.; Chouhan, R. Enhanced edge detection using SR-guided threshold maneuvering and window mapping: Handling broken edges and noisy structures in canny edges. IEEE Access 2022, 10, 11191–11205. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.W.; Lim, J.S. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 1984, 32, 236–243. [Google Scholar] [CrossRef]
- Moss, J.C.; Adamopoulos, P.G.; Hammond, J.K. Time-frequency distributions: A modification applied to the pseudo-Wigner-Ville distribution and the spectrogram. In Proceedings of the IEEE International Symposium on Circuits and Systems, Portland, OR, USA, 8–11 May 1989. [Google Scholar] [CrossRef]
- Szmajda, M.; Górecki, K.; Mroczka, J. Gabor transform, SPWVD, Gabor-Wigner transform and wavelet transform—tools for power quality monitoring. Metrol. Meas. Syst. 2010, 17, 383–396. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
carrier frequency | 6 GHz |
sampling rate | 2000 Hz |
sampling time t | 4 s |
bottom radius r | 0.6 m |
distance from top to gravity | 2.6 m |
distance from gravity to bottom | 0.9 m |
angular velocity of the cone | rad/s |
angle between LOS and spin axis | rad |
pitch angle | rad |
residual velocity v | −21.0000 m/s |
first-order acceleration | 0.5000 m/s |
second-order acceleration | 0.3000 m/s |
Real Value | (m/s) | (m/s) | (m/s) | |
---|---|---|---|---|
Estimated value | 8 dB | −20.9984 | 0.5006 | 0.3019 |
6 dB | −21.0269 | 0.5006 | 0.2994 | |
4 dB | −21.0046 | 0.5072 | 0.2974 | |
2 dB | −20.9949 | 0.5010 | 0.2935 | |
0 dB | −21.0113 | 0.4864 | 0.2947 | |
−2 dB | −21.0066 | 0.4933 | 0.3116 | |
−4 dB | −20.8790 | 0.4803 | 0.3127 | |
−6 dB | −21.1823 | 0.5373 | 0.2916 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, B.; Peng, Z.; Yang, D.; Wang, X.; Li, J. Translational Compensation Algorithm for Ballistic Targets in Midcourse Based on Template Matching. Remote Sens. 2022, 14, 3678. https://doi.org/10.3390/rs14153678
Liang B, Peng Z, Yang D, Wang X, Li J. Translational Compensation Algorithm for Ballistic Targets in Midcourse Based on Template Matching. Remote Sensing. 2022; 14(15):3678. https://doi.org/10.3390/rs14153678
Chicago/Turabian StyleLiang, Buge, Zhenghong Peng, Degui Yang, Xing Wang, and Jin Li. 2022. "Translational Compensation Algorithm for Ballistic Targets in Midcourse Based on Template Matching" Remote Sensing 14, no. 15: 3678. https://doi.org/10.3390/rs14153678
APA StyleLiang, B., Peng, Z., Yang, D., Wang, X., & Li, J. (2022). Translational Compensation Algorithm for Ballistic Targets in Midcourse Based on Template Matching. Remote Sensing, 14(15), 3678. https://doi.org/10.3390/rs14153678