Characteristics and Mechanisms of Marine Heatwaves in the East Asian Marginal Seas: Regional and Seasonal Differences
Abstract
1. Introduction
2. Data and Methods
2.1. Data Description
2.2. Definition of MHWs
2.3. Criteria of Composite Analysis
3. Results
3.1. MHW Characteristics
3.2. Seasonal MHW Characteristics
3.3. Mechanism of MHWs: Summer
3.4. Mechanism of MHWs: Winter
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Technical Summary. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Poloczanska, E., Mintenbeck, K., Tignor, M., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019. [Google Scholar]
- Collins, M.; Sutherland, M.; Bouwer, L.; Cheong, S.M.; Frolicher, T.; DesCombes, H.J.; Roxy, M.K.; Losada, I.; McInnes, K.; Ratter, B.; et al. Extremes, Abrupt Changes and Managing Risk. 2019. Available online: http://ecite.utas.edu.au/148967/ (accessed on 10 December 2019).
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Oliver, E.C.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Sen Gupta, A.; Hobday, A.J.; et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, I.J.; Briones, F. Understanding the El Niño costero of 2017: The definition problem and challenges of climate forecasting and disaster responses. Int. J. Disaster Risk Sci. 2017, 8, 489–492. [Google Scholar] [CrossRef]
- Alexander, D. Natural Disasters, 1st ed.; Routledge: London, UK, 2018. [Google Scholar]
- Frölicher, T.L.; Fischer, E.M.; Gruber, N. Marine heatwaves under global warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef]
- Pearce, A.F.; Feng, M. The rise and fall of the “marine heat wave” off Western Australia during summer of 2010/2011. J. Mar. Syst. 2013, 111, 139–156. [Google Scholar] [CrossRef]
- Wang, D.; Xu, T.; Fang, G.; Jiang, S.; Wang, G.; Wei, Z.; Wang, Y. Characteristics of Marine Heatwaves in the Japan/East Sea. Remote Sens. 2022, 14, 936. [Google Scholar] [CrossRef]
- Joh, Y.; Di Lorenzo, E. Increasing coupling between NPGO and PDO leads to prolonged marine heatwaves in the Northeast Pacific. Geophys. Res. Lett. 2017, 44, 11–663. [Google Scholar] [CrossRef]
- Lee, S.; Park, M.S.; Kwon, M.; Kim, Y.H.; Park, Y.G. Two major modes of East Asian marine heatwaves. Environ. Res. Lett. 2020, 15, 074008. [Google Scholar] [CrossRef]
- Oliver, E.C.; Lago, V.; Hobday, A.J.; Holbrook, N.J.; Ling, S.D.; Mundy, C.N. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability. Prog. Oceanogr. 2018, 161, 116–130. [Google Scholar] [CrossRef]
- Di Lorenzo, E.; Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 2016, 6, 1042–1047. [Google Scholar] [CrossRef]
- Bates, B.; Kundzewicz, Z.; Wu, S.; Palutikof, J.P. Climate Change and Water; Technical Paper of the IPCC; IPCC Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- Hayashida, H.; Matear, R.J.; Strutton, P.G. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Glob. Change Biol. 2020, 26, 4800–4811. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.K.; Park, B.S.; Kim, J.H.; Baek, S.S.; Baek, S.H. Effect of marine heatwaves on bloom formation of the harmful dinoflagellate Cochlodinium polykrikoides: Two sides of the same coin? Harmful Algae 2021, 104, 102029. [Google Scholar] [CrossRef] [PubMed]
- Garrabou, J.; Coma, R.; Bensoussan, N.; Bally, M.; Chevaldonné, P.; Cigliano, M.; Díaz, D.; Harmelin, J.G.; Gambi, M.C.; Kersting, D.K.; et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 2009, 15, 1090–1103. [Google Scholar] [CrossRef]
- Feng, M.; McPhaden, M.J.; Xie, S.P.; Hafner, J. La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep. 2013, 3, 1277. [Google Scholar] [CrossRef]
- Benthuysen, J.; Feng, M.; Zhong, L. Spatial patterns of warming off Western Australia during the 2011 Ningaloo Niño: Quantifying impacts of remote and local forcing. Cont. Shelf Res. 2014, 91, 232–246. [Google Scholar] [CrossRef]
- Wernberg, T.; Smale, D.A.; Tuya, F.; Thomsen, M.S.; Langlois, T.J.; De Bettignies, T.; Bennett, S.; Rousseaux, C.S. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 2012, 3, 78–82. [Google Scholar] [CrossRef]
- Smale, D.A.; Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122829. [Google Scholar] [CrossRef]
- Mills, K.E.; Pershing, A.J.; Brown, C.J.; Chen, Y.; Chiang, F.-S.; Holland, D.S.; Lehuta, S.; Nye, J.A.; Sun, J.C.; Thomas, A.C.; et al. Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 2013, 26, 191–195. [Google Scholar] [CrossRef]
- Kain, J.M. The seasons in the subtidal. Brit. Phycol. J. 1989, 24, 203–215. [Google Scholar] [CrossRef]
- Atkinson, J.; King, N.G.; Wilmes, S.B.; Moore, P.J. Summer and winter marine heatwaves favor an invasive over native seaweeds. J. Phycol. 2020, 56, 1591–1600. [Google Scholar] [CrossRef]
- Santelices, B. Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanogr. Mar. Biol. Annu. Rev. 1990, 28, 177–276. [Google Scholar]
- Lotze, H.K.; Worm, B.; Sommer, U. Strong bottom-up and top-down control of early life stages of macroalgae. Limnol. Oceanogr. 2001, 46, 749–757. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, J.; Yin, J.; Zou, X. Marine heatwaves in China’s marginal seas and adjacent offshore waters: Past, present, and future. J. Geophys. Res. Ocean. 2020, 125, e2019JC015801. [Google Scholar] [CrossRef]
- Park, S.; Chu, P.C. Interannual SST variability in the Japan/East Sea and relationship with environmental variables. J. Oceanogr. 2006, 62, 115–132. [Google Scholar] [CrossRef]
- Yeh, S.W.; Park, Y.G.; Min, H.; Kim, C.H.; Lee, J.H. Analysis of characteristics in the sea surface temperature variability in the East/Japan Sea. Prog. Oceanogr. 2010, 85, 213–223. [Google Scholar] [CrossRef]
- Park, T.; Jang, C.J.; Jungclaus, J.H.; Haak, H.; Park, W. Effects of the Changjiang river discharge on sea surface warming in the Yellow and East China Seas in summer. Cont. Shelf Res. 2011, 31, 15–22. [Google Scholar] [CrossRef]
- Park, K.A.; Lee, E.Y.; Chang, E.; Hong, S. Spatial and temporal variability of sea surface temperature and warming trends in the Yellow Sea. J. Mar. Syst. 2015, 143, 24–38. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. In ECMWF Newsletter; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2016; Volume 147. [Google Scholar]
- Choi, B.J.; Byun, D.S.; Lee, K.H. Satellite-altimeter-derived East Sea surface currents: Estimation, description and variability pattern. Sea 2012, 17, 225–242. [Google Scholar] [CrossRef][Green Version]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef]
- Schlegel, R.W.; Smit, A.J. HeatwaveR: A central algorithm for the detection of heatwaves and cold-spells. J. Open Source Softw. 2018, 3, 821. [Google Scholar] [CrossRef]
- Ham, Y.-G.; Chikamoto, Y.; Kug, J.-S.; Kimoto, M.; Mochizuki, T. Tropical Atlantic–Korea teleconnection pattern during boreal summer season. Clim. Dyn. 2017, 49, 2649–2664. [Google Scholar] [CrossRef]
- Ham, Y.-G.; Kug, J.-S.; Kang, I.-S. Role of moist energy advection in formulating anomalous Walker Circulation associated with ENSO. J. Geophy. Res. 2007, 112, D24105. [Google Scholar] [CrossRef]
- Park, K.; Park, J.E.; Choi, B.J.; Byun, D.S.; Lee, E.I. An oceanic current map of the East Sea for science textbooks based on scientific knowledge acquired from oceanic measurements. Sea J. Korean Soc. Oceanogr. 2013, 18, 234–265. [Google Scholar]
- Kim, C.H.; Yoon, J.H. Modeling of the wind-driven circulation in the Japan Sea using a reduced gravity model. J. Oceanogr. 1996, 52, 359–373. [Google Scholar] [CrossRef]
- Yarichin, V.G. Steady state of the Japan Sea circulation. Probl. Oceanogr. 1980, 46–61. [Google Scholar]
- Yoon, J.H.; Abe, K.; Ogata, T.; Wakamatsu, Y. The effects of wind-stress curl on the Japan/East Sea circulation. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 1827–1844. [Google Scholar] [CrossRef]
- Park, Y.; Shin, H.R.; Yoon, J.H.; Kim, C.H.; Yoshikawa, Y. Simulation of eddy-driven deep circulation in the East/Japan Sea by using a three-layer model with wind, throughflow and deep water formation forcings. J. Mar. Syst. 2015, 150, 41–55. [Google Scholar] [CrossRef]
- Kim, D.; Shin, H.R.; Kim, C.H.; Hirose, N. Characteristics of the East Sea (Japan Sea) circulation depending on surface heat flux and its effect on branching of the Tsushima Warm Current. Cont. Shelf Res. 2020, 192, 104025. [Google Scholar] [CrossRef]
- Oliver, E.C. Mean warming not variability drives marine heatwave trends. Clim. Dyn. 2019, 53, 1653–1659. [Google Scholar] [CrossRef]
- Park, K.A. Spatial and Temporal Variability of Sea Surface Temperature and Sea Level Anomaly in the East Sea Using Satellite Data (NOAA/AVHRR, TOPEX/ALT). Ph.D. Dissertation, Seoul National University, Seoul, Korea, 1996; p. 294. [Google Scholar]
- Chu, P.C.; Lan, J.; Fan, C.W. Japan Sea circulation and thermohaline structure, Part 1, Climatology. J. Phys. Oceanogr. 2001, 31, 244–271. [Google Scholar] [CrossRef]
- Chu, P.C.; Lan, J.; Fan, C.W. Japan Sea circulation and thermohaline structure, Part 2, A variational P-vector method. J. Phys. Oceanogr. 2001, 31, 2886–2902. [Google Scholar] [CrossRef]
- Chu, P.C.; Wang, G.H.; Chen, Y.C. Japan Sea circulation and thermohaline structure, Part 3, Autocorrelation functions. J. Phys. Oceanogr. 2002, 32, 3596–3615. [Google Scholar] [CrossRef]
- Chu, P.C.; Fralick, C.R., Jr.; Haeger, S.D.; Carron, M.J. A parametric model for the Yellow Sea thermal variability. J. Geophys. Res. Ocean. 1997, 102, 10499–10507. [Google Scholar] [CrossRef]
- Gordon, A.L.; Giulivi, C.F. Pacific decadal oscillation and sea level in the Japan/East Sea. Deep. Sea Res. I 2004, 51, 653–663. [Google Scholar] [CrossRef]
- Andres, M.; Park, J.; Mark, W.; Zhu, X.; Nakamura, H.; Kim, K.; Chang, K. Manifestation of the Pacific Decadal Oscillation in the Kuroshio. Geophys. Res. Lett. 2009, 36, L16602. [Google Scholar] [CrossRef]
- Ham, Y.G.; Na, H.Y. Marginal sea surface temperature variation as a pre-cursor of heat waves over the Korean Peninsula. Asia-Pac. J. Atmos. Sci. 2017, 53, 445–455. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.; Bang, M.; Joh, Y.; Ham, Y.-G.; Kang, N.; Jang, C.J. Characteristics and Mechanisms of Marine Heatwaves in the East Asian Marginal Seas: Regional and Seasonal Differences. Remote Sens. 2022, 14, 3522. https://doi.org/10.3390/rs14153522
Choi W, Bang M, Joh Y, Ham Y-G, Kang N, Jang CJ. Characteristics and Mechanisms of Marine Heatwaves in the East Asian Marginal Seas: Regional and Seasonal Differences. Remote Sensing. 2022; 14(15):3522. https://doi.org/10.3390/rs14153522
Chicago/Turabian StyleChoi, Wonkeun, Minkyoung Bang, Youngji Joh, Yoo-Geun Ham, Namyoung Kang, and Chan Joo Jang. 2022. "Characteristics and Mechanisms of Marine Heatwaves in the East Asian Marginal Seas: Regional and Seasonal Differences" Remote Sensing 14, no. 15: 3522. https://doi.org/10.3390/rs14153522
APA StyleChoi, W., Bang, M., Joh, Y., Ham, Y.-G., Kang, N., & Jang, C. J. (2022). Characteristics and Mechanisms of Marine Heatwaves in the East Asian Marginal Seas: Regional and Seasonal Differences. Remote Sensing, 14(15), 3522. https://doi.org/10.3390/rs14153522