Characteristics and Mechanisms of Marine Heatwaves in the East Asian Marginal Seas: Regional and Seasonal Differences
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Description
2.2. Definition of MHWs
2.3. Criteria of Composite Analysis
3. Results
3.1. MHW Characteristics
3.2. Seasonal MHW Characteristics
3.3. Mechanism of MHWs: Summer
3.4. Mechanism of MHWs: Winter
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Technical Summary. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Poloczanska, E., Mintenbeck, K., Tignor, M., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019. [Google Scholar]
- Collins, M.; Sutherland, M.; Bouwer, L.; Cheong, S.M.; Frolicher, T.; DesCombes, H.J.; Roxy, M.K.; Losada, I.; McInnes, K.; Ratter, B.; et al. Extremes, Abrupt Changes and Managing Risk. 2019. Available online: http://ecite.utas.edu.au/148967/ (accessed on 10 December 2019).
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Oliver, E.C.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Sen Gupta, A.; Hobday, A.J.; et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, I.J.; Briones, F. Understanding the El Niño costero of 2017: The definition problem and challenges of climate forecasting and disaster responses. Int. J. Disaster Risk Sci. 2017, 8, 489–492. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D. Natural Disasters, 1st ed.; Routledge: London, UK, 2018. [Google Scholar]
- Frölicher, T.L.; Fischer, E.M.; Gruber, N. Marine heatwaves under global warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef]
- Pearce, A.F.; Feng, M. The rise and fall of the “marine heat wave” off Western Australia during summer of 2010/2011. J. Mar. Syst. 2013, 111, 139–156. [Google Scholar] [CrossRef]
- Wang, D.; Xu, T.; Fang, G.; Jiang, S.; Wang, G.; Wei, Z.; Wang, Y. Characteristics of Marine Heatwaves in the Japan/East Sea. Remote Sens. 2022, 14, 936. [Google Scholar] [CrossRef]
- Joh, Y.; Di Lorenzo, E. Increasing coupling between NPGO and PDO leads to prolonged marine heatwaves in the Northeast Pacific. Geophys. Res. Lett. 2017, 44, 11–663. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Park, M.S.; Kwon, M.; Kim, Y.H.; Park, Y.G. Two major modes of East Asian marine heatwaves. Environ. Res. Lett. 2020, 15, 074008. [Google Scholar] [CrossRef]
- Oliver, E.C.; Lago, V.; Hobday, A.J.; Holbrook, N.J.; Ling, S.D.; Mundy, C.N. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability. Prog. Oceanogr. 2018, 161, 116–130. [Google Scholar] [CrossRef]
- Di Lorenzo, E.; Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 2016, 6, 1042–1047. [Google Scholar] [CrossRef]
- Bates, B.; Kundzewicz, Z.; Wu, S.; Palutikof, J.P. Climate Change and Water; Technical Paper of the IPCC; IPCC Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- Hayashida, H.; Matear, R.J.; Strutton, P.G. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Glob. Change Biol. 2020, 26, 4800–4811. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.K.; Park, B.S.; Kim, J.H.; Baek, S.S.; Baek, S.H. Effect of marine heatwaves on bloom formation of the harmful dinoflagellate Cochlodinium polykrikoides: Two sides of the same coin? Harmful Algae 2021, 104, 102029. [Google Scholar] [CrossRef] [PubMed]
- Garrabou, J.; Coma, R.; Bensoussan, N.; Bally, M.; Chevaldonné, P.; Cigliano, M.; Díaz, D.; Harmelin, J.G.; Gambi, M.C.; Kersting, D.K.; et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 2009, 15, 1090–1103. [Google Scholar] [CrossRef]
- Feng, M.; McPhaden, M.J.; Xie, S.P.; Hafner, J. La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep. 2013, 3, 1277. [Google Scholar] [CrossRef] [Green Version]
- Benthuysen, J.; Feng, M.; Zhong, L. Spatial patterns of warming off Western Australia during the 2011 Ningaloo Niño: Quantifying impacts of remote and local forcing. Cont. Shelf Res. 2014, 91, 232–246. [Google Scholar] [CrossRef]
- Wernberg, T.; Smale, D.A.; Tuya, F.; Thomsen, M.S.; Langlois, T.J.; De Bettignies, T.; Bennett, S.; Rousseaux, C.S. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 2012, 3, 78–82. [Google Scholar] [CrossRef]
- Smale, D.A.; Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122829. [Google Scholar] [CrossRef]
- Mills, K.E.; Pershing, A.J.; Brown, C.J.; Chen, Y.; Chiang, F.-S.; Holland, D.S.; Lehuta, S.; Nye, J.A.; Sun, J.C.; Thomas, A.C.; et al. Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 2013, 26, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.M. The seasons in the subtidal. Brit. Phycol. J. 1989, 24, 203–215. [Google Scholar] [CrossRef]
- Atkinson, J.; King, N.G.; Wilmes, S.B.; Moore, P.J. Summer and winter marine heatwaves favor an invasive over native seaweeds. J. Phycol. 2020, 56, 1591–1600. [Google Scholar] [CrossRef]
- Santelices, B. Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanogr. Mar. Biol. Annu. Rev. 1990, 28, 177–276. [Google Scholar]
- Lotze, H.K.; Worm, B.; Sommer, U. Strong bottom-up and top-down control of early life stages of macroalgae. Limnol. Oceanogr. 2001, 46, 749–757. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Wang, J.; Yin, J.; Zou, X. Marine heatwaves in China’s marginal seas and adjacent offshore waters: Past, present, and future. J. Geophys. Res. Ocean. 2020, 125, e2019JC015801. [Google Scholar] [CrossRef]
- Park, S.; Chu, P.C. Interannual SST variability in the Japan/East Sea and relationship with environmental variables. J. Oceanogr. 2006, 62, 115–132. [Google Scholar] [CrossRef]
- Yeh, S.W.; Park, Y.G.; Min, H.; Kim, C.H.; Lee, J.H. Analysis of characteristics in the sea surface temperature variability in the East/Japan Sea. Prog. Oceanogr. 2010, 85, 213–223. [Google Scholar] [CrossRef]
- Park, T.; Jang, C.J.; Jungclaus, J.H.; Haak, H.; Park, W. Effects of the Changjiang river discharge on sea surface warming in the Yellow and East China Seas in summer. Cont. Shelf Res. 2011, 31, 15–22. [Google Scholar] [CrossRef]
- Park, K.A.; Lee, E.Y.; Chang, E.; Hong, S. Spatial and temporal variability of sea surface temperature and warming trends in the Yellow Sea. J. Mar. Syst. 2015, 143, 24–38. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. In ECMWF Newsletter; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2016; Volume 147. [Google Scholar]
- Choi, B.J.; Byun, D.S.; Lee, K.H. Satellite-altimeter-derived East Sea surface currents: Estimation, description and variability pattern. Sea 2012, 17, 225–242. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, R.W.; Smit, A.J. HeatwaveR: A central algorithm for the detection of heatwaves and cold-spells. J. Open Source Softw. 2018, 3, 821. [Google Scholar] [CrossRef]
- Ham, Y.-G.; Chikamoto, Y.; Kug, J.-S.; Kimoto, M.; Mochizuki, T. Tropical Atlantic–Korea teleconnection pattern during boreal summer season. Clim. Dyn. 2017, 49, 2649–2664. [Google Scholar] [CrossRef]
- Ham, Y.-G.; Kug, J.-S.; Kang, I.-S. Role of moist energy advection in formulating anomalous Walker Circulation associated with ENSO. J. Geophy. Res. 2007, 112, D24105. [Google Scholar] [CrossRef]
- Park, K.; Park, J.E.; Choi, B.J.; Byun, D.S.; Lee, E.I. An oceanic current map of the East Sea for science textbooks based on scientific knowledge acquired from oceanic measurements. Sea J. Korean Soc. Oceanogr. 2013, 18, 234–265. [Google Scholar]
- Kim, C.H.; Yoon, J.H. Modeling of the wind-driven circulation in the Japan Sea using a reduced gravity model. J. Oceanogr. 1996, 52, 359–373. [Google Scholar] [CrossRef] [Green Version]
- Yarichin, V.G. Steady state of the Japan Sea circulation. Probl. Oceanogr. 1980, 46–61. [Google Scholar]
- Yoon, J.H.; Abe, K.; Ogata, T.; Wakamatsu, Y. The effects of wind-stress curl on the Japan/East Sea circulation. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 1827–1844. [Google Scholar] [CrossRef]
- Park, Y.; Shin, H.R.; Yoon, J.H.; Kim, C.H.; Yoshikawa, Y. Simulation of eddy-driven deep circulation in the East/Japan Sea by using a three-layer model with wind, throughflow and deep water formation forcings. J. Mar. Syst. 2015, 150, 41–55. [Google Scholar] [CrossRef]
- Kim, D.; Shin, H.R.; Kim, C.H.; Hirose, N. Characteristics of the East Sea (Japan Sea) circulation depending on surface heat flux and its effect on branching of the Tsushima Warm Current. Cont. Shelf Res. 2020, 192, 104025. [Google Scholar] [CrossRef]
- Oliver, E.C. Mean warming not variability drives marine heatwave trends. Clim. Dyn. 2019, 53, 1653–1659. [Google Scholar] [CrossRef]
- Park, K.A. Spatial and Temporal Variability of Sea Surface Temperature and Sea Level Anomaly in the East Sea Using Satellite Data (NOAA/AVHRR, TOPEX/ALT). Ph.D. Dissertation, Seoul National University, Seoul, Korea, 1996; p. 294. [Google Scholar]
- Chu, P.C.; Lan, J.; Fan, C.W. Japan Sea circulation and thermohaline structure, Part 1, Climatology. J. Phys. Oceanogr. 2001, 31, 244–271. [Google Scholar] [CrossRef] [Green Version]
- Chu, P.C.; Lan, J.; Fan, C.W. Japan Sea circulation and thermohaline structure, Part 2, A variational P-vector method. J. Phys. Oceanogr. 2001, 31, 2886–2902. [Google Scholar] [CrossRef] [Green Version]
- Chu, P.C.; Wang, G.H.; Chen, Y.C. Japan Sea circulation and thermohaline structure, Part 3, Autocorrelation functions. J. Phys. Oceanogr. 2002, 32, 3596–3615. [Google Scholar] [CrossRef]
- Chu, P.C.; Fralick, C.R., Jr.; Haeger, S.D.; Carron, M.J. A parametric model for the Yellow Sea thermal variability. J. Geophys. Res. Ocean. 1997, 102, 10499–10507. [Google Scholar] [CrossRef] [Green Version]
- Gordon, A.L.; Giulivi, C.F. Pacific decadal oscillation and sea level in the Japan/East Sea. Deep. Sea Res. I 2004, 51, 653–663. [Google Scholar] [CrossRef]
- Andres, M.; Park, J.; Mark, W.; Zhu, X.; Nakamura, H.; Kim, K.; Chang, K. Manifestation of the Pacific Decadal Oscillation in the Kuroshio. Geophys. Res. Lett. 2009, 36, L16602. [Google Scholar] [CrossRef] [Green Version]
- Ham, Y.G.; Na, H.Y. Marginal sea surface temperature variation as a pre-cursor of heat waves over the Korean Peninsula. Asia-Pac. J. Atmos. Sci. 2017, 53, 445–455. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.; Bang, M.; Joh, Y.; Ham, Y.-G.; Kang, N.; Jang, C.J. Characteristics and Mechanisms of Marine Heatwaves in the East Asian Marginal Seas: Regional and Seasonal Differences. Remote Sens. 2022, 14, 3522. https://doi.org/10.3390/rs14153522
Choi W, Bang M, Joh Y, Ham Y-G, Kang N, Jang CJ. Characteristics and Mechanisms of Marine Heatwaves in the East Asian Marginal Seas: Regional and Seasonal Differences. Remote Sensing. 2022; 14(15):3522. https://doi.org/10.3390/rs14153522
Chicago/Turabian StyleChoi, Wonkeun, Minkyoung Bang, Youngji Joh, Yoo-Geun Ham, Namyoung Kang, and Chan Joo Jang. 2022. "Characteristics and Mechanisms of Marine Heatwaves in the East Asian Marginal Seas: Regional and Seasonal Differences" Remote Sensing 14, no. 15: 3522. https://doi.org/10.3390/rs14153522
APA StyleChoi, W., Bang, M., Joh, Y., Ham, Y. -G., Kang, N., & Jang, C. J. (2022). Characteristics and Mechanisms of Marine Heatwaves in the East Asian Marginal Seas: Regional and Seasonal Differences. Remote Sensing, 14(15), 3522. https://doi.org/10.3390/rs14153522