Aerosol Mineralogical Study Using Laboratory and IASI Measurements: Application to East Asian Deserts
Abstract
:1. Introduction
2. Gobi Dust Detection from Satellite Remote Sensing
2.1. IASI
2.2. Surface Emissivity Optimization Method and Dust Spectral Selection
2.3. IASI Optical Thickness
2.4. Cloud Selection
3. Experimental Laboratory Data
3.1. Gobi Mineralogical Dust Composition
3.2. Extinction Coefficient Spectra and Molecular Assignments
4. Mineralogical Mapping Method
5. Case Studies
5.1. May 2017 from IASI-A
5.2. Generalization
5.2.1. IASI-A and IASI-B
5.2.2. March 2021 from IASI-A
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duniway, M.C.; Pfennigwerth, A.A.; Fick, S.E.; Nauman, T.W.; Belnap, J.; Barger, N.N. Wind erosion and dust from US drylands: A review of causes, consequences, and solutions in a changing world. Ecosphere 2019, 10, e02650. [Google Scholar] [CrossRef] [Green Version]
- Querol, X.; Tobías, A.; Pérez, N.; Karanasiou, A.; Amato, F.; Stafoggia, M.; Pérez García-Pando, C.; Ginoux, P.; Forastiere, F.; Gumy, S.; et al. Monitoring the impact of desert dust outbreaks for air quality for health studies. Environ. Int. 2019, 130, 104867. [Google Scholar] [CrossRef] [PubMed]
- Safriel, U.N. The assessment of global trends in land degradation. In Climate and Land Degradation; Sivakumar, M.V.K., Ndiang’ui, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–38. ISBN 978-3-540-72438-4. [Google Scholar]
- Bi, J.; Huang, J.; Shi, J.; Hu, Z.; Zhou, T.; Zhang, G.; Huang, Z.; Wang, X.; Jin, H. Measurement of scattering and absorption properties of dust aerosol in a Gobi farmland region of northwestern China—A potential anthropogenic influence. Atmos. Chem. Phys. 2017, 17, 7775–7792. [Google Scholar] [CrossRef] [Green Version]
- Kanji, Z.A.; Sullivan, R.C.; Niemand, M.; DeMott, P.J.; Prenni, A.J.; Chou, C.; Saathoff, H.; Möhler, O. Heterogeneous ice nucleation properties of natural desert dust particles coated with a surrogate of secondary organic aerosol. Atmos. Chem. Phys. 2019, 19, 5091–5110. [Google Scholar] [CrossRef] [Green Version]
- Michel, A.E.; Usher, C.R.; Grassian, V.H. Reactive uptake of ozone on mineral oxides and mineral dusts. Atmos. Environ. 2003, 37, 3201–3211. [Google Scholar] [CrossRef]
- Augustin-Bauditz, S.; Wex, H.; Kanter, S.; Ebert, M.; Niedermeier, D.; Stolz, F.; Prager, A.; Stratmann, F. The immersion mode ice nucleation behavior of mineral dusts: A comparison of different pure and surface modified dusts. Geophys. Res. Lett. 2014, 41, 7375–7382. [Google Scholar] [CrossRef]
- Marcotte, A.R.; Anbar, A.D.; Majestic, B.J.; Herckes, P. Mineral Dust and Iron Solubility: Effects of Composition, Particle Size, and Surface Area. Atmosphere 2020, 11, 533. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.C. Atmospheric controls on mineral dust emission from the Bodélé Depression, Chad: The role of the low level jet. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- An, L.; Che, H.; Xue, M.; Zhang, T.; Wang, H.; Wang, Y.; Zhou, C.; Zhao, H.; Gui, K.; Zheng, Y.; et al. Temporal and spatial variations in sand and dust storm events in East Asia from 2007 to 2016: Relationships with surface conditions and climate change. Sci. Total Environ. 2018, 633, 452–462. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, Z.; Wen, T.; Huang, X.; Liu, J.; Tang, G.; Yang, Y.; Li, X.; Shen, R.; Hu, B.; et al. Characteristics of chemical composition and seasonal variations of PM2.5 in Shijiazhuang, China: Impact of primary emissions and secondary formation. Sci. Total Environ. 2019, 677, 215–229. [Google Scholar] [CrossRef]
- Wu, J.; Kurosaki, Y.; Shinoda, M.; Kai, K. Regional Characteristics of Recent Dust Occurrence and Its Controlling Factors in East Asia. SOLA 2016, 12, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Luo, B.; Xie, S. dong Characteristics of the long-range transport dust events in Chengdu, Southwest China. Atmos. Environ. 2015, 122, 713–722. [Google Scholar] [CrossRef]
- Mikami, M.; Shi, G.Y.; Uno, I.; Yabuki, S.; Iwasaka, Y.; Yasui, M.; Aoki, T.; Tanaka, T.Y.; Kurosaki, Y.; Masuda, K.; et al. Aeolian dust experiment on climate impact: An overview of Japan–China joint project ADEC. Glob. Planet. Chang. 2006, 52, 142–172. [Google Scholar] [CrossRef]
- Guo, J.; Lou, M.; Miao, Y.; Wang, Y.; Zeng, Z.; Liu, H.; He, J.; Xu, H.; Wang, F.; Min, M.; et al. Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling. Environ. Pollut. 2017, 230, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Grousset, F.E.; Ginoux, P.; Bory, A.; Biscaye, P.E. Case study of a Chinese dust plume reaching the French Alps. Geophys. Res. Lett. 2003, 30, 1277. [Google Scholar] [CrossRef]
- Young Jeong, G. Mineralogy and geochemistry of Asian dust: Dependence on migration path, fractionation, and reactions with polluted air. Atmos. Chem. Phys. 2020, 20, 7411–7428. [Google Scholar] [CrossRef]
- Chen, J.; Li, G.J. Geochemical studies on the source region of Asian dust. Sci. China Earth Sci. 2011, 54, 1279–1301. [Google Scholar] [CrossRef]
- Shao, L.Y.; Li, W.J.; Yang, S.S.; Shi, Z.B.; Lü, S.L. Mineralogical characteristics of airborne particles collected in Beijing during a severe Asian dust storm period in spring 2002. Sci. China Ser. D Earth Sci. 2007, 50, 953–959. [Google Scholar] [CrossRef]
- Shen, Z.; Caquineau, S.; Cao, J.; Zhang, X.; Han, Y.; Gaudichet, A.; Gomes, L. Mineralogical characteristics of soil dust from source regions in northern China. Particuology 2009, 7, 507–512. [Google Scholar] [CrossRef]
- Di Biagio, C.; Formenti, P.; Styler, S.A.; Pangui, E.; Doussin, J.F. Laboratory chamber measurements of the longwave extinction spectra and complex refractive indices of African and Asian mineral dusts. Geophys. Res. Lett. 2014, 41, 6289–6297. [Google Scholar] [CrossRef]
- Wainker, D.M.; Tackett, J.L.; Getzewich, B.J.; Liu, Z.; Vaughan, M.A.; Rogers, R.R. The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys. 2013, 13, 3345–3361. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Uno, I.; Yumimoto, K.; Pan, X.; Chen, X.; Li, J.; Wang, Z.; Shimizu, A.; Sugimoto, N. Dust Heterogeneous Reactions during Long-Range Transport of a Severe Dust Storm in May 2017 over East Asia. Atmosphere 2019, 10, 680. [Google Scholar] [CrossRef] [Green Version]
- Ginoux, P.; Garbuzov, D.; Hsu, N.C. Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data. J. Geophys. Res. Atmos. 2010, 115, 5204. [Google Scholar] [CrossRef] [Green Version]
- Pierangelo, C.; Mishchenko, M.; Balkanski, Y.; Chédin, A. Retrieving the effective radius of Saharan dust coarse mode from AIRS. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Klüser, L.; Martynenko, D.; Holzer-Popp, T. Thermal infrared remote sensing of mineral dust over land and ocean: A spectral SVD based retrieval approach for IASI. Atmos. Meas. Tech. 2011, 4, 757–773. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Y.; Huang, J.P.; Li, J.X.; Jia, R.; Jiang, N.X.; Kang, L.T.; Ma, X.J.; Xie, T.T. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci. China Earth Sci. 2017, 60, 1338–1355. [Google Scholar] [CrossRef]
- Masiello, G.; Serio, C.; Venafra, S.; DeFeis, I.; Borbas, E.E. Diurnal variation in Sahara desert sand emissivity during the dry season from IASI observations. J. Geophys. Res. Atmos. 2014, 119, 1626–1638. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, S.A. Remote sensing aerosols using satellite infrared observations. J. Geophys. Res. Atmos. 1997, 102, 17069–17079. [Google Scholar] [CrossRef]
- Crevoisier, C.; Clerbaux, C.; Guidard, V.; Phulpin, T.; Armante, R.; Barret, B.; Camy-Peyret, C.; Chaboureau, J.P.; Coheur, P.F.; Crépeau, L.; et al. Towards IASI-New Generation (IASI-NG): Impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables. Atmos. Meas. Tech. 2014, 7, 4367–4385. [Google Scholar] [CrossRef] [Green Version]
- Blumstein, D.; Chalon, G.; Carlier, T.; Buil, C.; Hebert, P.; Maciaszek, T.; Ponce, G.; Phulpin, T.; Tournier, B.; Simeoni, D.; et al. IASI instrument: Technical overview and measured performances. Infrared Spaceborne Remote Sens. XII 2004, 5543, 196. [Google Scholar] [CrossRef]
- Hilton, F.; Armante, R.; August, T.; Barnet, C.; Bouchard, A.; Camy-Peyret, C.; Capelle, V.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; et al. Hyperspectral Earth Observation from IASI: Five Years of Accomplishments. Bull. Am. Meteorol. Soc. 2012, 93, 347–370. [Google Scholar] [CrossRef]
- Clerbaux, C.; Boynard, A.; Clarisse, L.; George, M.; Hadji-Lazaro, J.; Herbin, H.; Hurtmans, D.; Pommier, M.; Razavi, A.; Turquety, S.; et al. Atmospheric Chemistry and Physics Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys 2009, 9, 6041–6054. [Google Scholar] [CrossRef] [Green Version]
- Van Damme, M.; Clarisse, L.; Heald, C.L.; Hurtmans, D.; Ngadi, Y.; Clerbaux, C.; Dolman, A.J.; Erisman, J.W.; Coheur, P.F. Global distributions, time series and error characterization of atmospheric ammonia (NH3) from IASI satellite observations. Atmos. Chem. Phys. 2014, 14, 2905–2922. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.-W.; Lu, C.-H.; Liu, Q.; Collard, A.; Zhu, T.; Grogan, D.; Li, X.; Wang, J.; Grumbine, R.; Bhattacharjee, P.S. The Impact of Aerosols on Satellite Radiance Data Assimilation Using NCEP Global Data Assimilation System. Atmosphere 2021, 12, 432. [Google Scholar] [CrossRef]
- Griffiths, P.R.; De Haseth, J.A. Fourier Transform Infrared Spectrometry, 2nd ed.; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-471-19404-0. [Google Scholar]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley: Hoboken, NJ, USA, 1989; ISBN 047105772X. [Google Scholar]
- Bauduin, S.; Clarisse, L.; Theunissen, M.; George, M.; Hurtmans, D.; Clerbaux, C.; Coheur, P.F. IASI’s sensitivity to near-surface carbon monoxide (CO): Theoretical analyses and retrievals on test cases. J. Quant. Spectrosc. Radiat. Transf. 2017, 189, 428–440. [Google Scholar] [CrossRef]
- Clarisse, L.; Clerbaux, C.; Franco, B.; Hadji-Lazaro, J.; Whitburn, S.; Kopp, A.K.; Hurtmans, D.; Coheur, P.-F. A Decadal Data Set of Global Atmospheric Dust Retrieved From IASI Satellite Measurements. J. Geophys. Res. Atmos. 2019, 124, 1618–1647. [Google Scholar] [CrossRef] [Green Version]
- Piontek, D.; Bugliaro, L.; Kar, J.; Schumann, U.; Marenco, F.; Plu, M.; Voigt, C. The New Volcanic Ash Satellite Retrieval VACOS Using MSG/SEVIRI and Artificial Neural Networks: 2. Validation. Remote Sens. 2021, 13, 3128. [Google Scholar] [CrossRef]
- Zhou, D.K.; Smith, W.L.; Larar, A.M.; Liu, X.; Taylor, J.P.; Schlüssel, P.; Strow, L.L.; Mango, S.A. All weather IASI single field-of-view retrievals: Case study—Validation with JAIVEx data. Atmos. Chem. Phys. 2009, 9, 2241–2255. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.K.; Larar, A.M.; Liu, X.; Smith, W.L.; Strow, L.L.; Yang, P.; Schlüssel, P.; Calbet, X. Global land surface emissivity retrieved from satellite ultraspectral IR measurements. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1277–1290. [Google Scholar] [CrossRef]
- Zhou, D.K.; Larar, A.M.; Liu, X. Monitoring surface climate with its emissivity derived from satellite measurements. Land Surf. Remote Sens. 2012, 8524, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.K.; Larar, A.M.; Liu, X. Update on Iasi Emissivity Atlas. In Proceedings of the 19th International TOVS Study Conference (ITSC-19), Jeju Island, Korea, 26 March–1 April 2014. [Google Scholar]
- Huang, X.; Chen, X.; Zhou, D.K.; Liu, X. An Observationally Based Global Band-by-Band Surface Emissivity Dataset for Climate and Weather Simulations. J. Atmos. Sci. 2016, 73, 3541–3555. [Google Scholar] [CrossRef]
- Simms, J.E.; Berney, I.E.S.; Harrelson, D.W.; Corcoran, M.K.; Castellane, R.M. Analysis of Long Wave Infrared (LWIR) Soil Data to Predict Reflectance Response; Engineer Research And Development Center Vicksburg Ms Geotechnical And Structures Lab: Vicksburg, MS, USA, 2009. [Google Scholar]
- Herbin, H. Cloud Spectral Detection from IASI Using Principal Component Analysis. 2022; unpublished work. [Google Scholar]
- Formenti, P.; Schütz, L.; Balkanski, Y.; Desboeufs, K.; Ebert, M.; Kandler, K.; Petzold, A.; Scheuvens, D.; Weinbruch, S.; Zhang, D. Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos. Chem. Phys. 2011, 11, 8231–8256. [Google Scholar] [CrossRef] [Green Version]
- Journet, E.; Balkanski, Y.; Harrison, S.P. A new data set of soil mineralogy for dust-cycle modeling. Atmos. Chem. Phys. 2014, 14, 3801–3816. [Google Scholar] [CrossRef] [Green Version]
- Herbin, H.; Pujol, O.; Hubert, P.; Petitprez, D. New approach for the determination of aerosol refractive indices—Part I: Theoretical bases and numerical methodology. J. Quant. Spectrosc. Radiat. Transf. 2017, 200, 311–319. [Google Scholar] [CrossRef]
- Hubert, P.; Herbin, H.; Visez, N.; Pujol, O.; Petitprez, D. New approach for the determination of aerosol refractive indices—Part II: Experimental set-up and application to amorphous silica particles. J. Quant. Spectrosc. Radiat. Transf. 2017, 9, 37. [Google Scholar] [CrossRef]
- Deschutter, L.; Herbin, H.; Petitprez, D. Optical properties of Gobi dust and its pure compounds: Experimental extinction spectra and complex refractive indices determination. In Proceedings of the 23rd EGU General Assembly, Online, 19–30 April 2021; p. EGU21-2115. [Google Scholar]
- Romanias, M.N.; Zeineddine, M.N.; Gaudion, V.; Lun, X.; Thevenet, F.; Riffault, V. Heterogeneous Interaction of Isopropanol with Natural Gobi Dust. Environ. Sci. Technol. 2016, 50, 11714–11722. [Google Scholar] [CrossRef]
- Spitzer, W.G.; Kleinman, D.A. Infrared Lattice Bands of Quartz. Phys. Rev. 1961, 121, 1324. [Google Scholar] [CrossRef]
- Reig, F.B.; Adelantado, J.V.G.; Moya Moreno, M.C.M. FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta 2002, 58, 811–821. [Google Scholar] [CrossRef]
- Madejova, J.; Komadel, P. Baseline Studies of the Clay Minerals Society Source Clays: Infrared Methods. Clays Clay Miner. 2001, 49, 410–432. [Google Scholar] [CrossRef]
- Madejová, J.; Gates, W.P.; Petit, S. IR Spectra of Clay Minerals. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2017; Volume 8, pp. 107–149. [Google Scholar]
- Green, D.; Schodlok, M. Characterisation of carbonate minerals from hyperspectral TIR scanning using features at 14 000 and 11 300 nm. Aust. J. Earth Sci. 2016, 63, 951–957. [Google Scholar] [CrossRef]
- Bishop, J.L.; King, S.J.; Lane, M.D.; Brown, A.J.; Lafuente, B.; Hiroi, T.; Roberts, R.; Swayze, G.A.; Lin, J.F.; Sánchez Román, M. Spectral Properties of Anhydrous Carbonates and Nitrates. Earth Sp. Sci. 2021, 8, e2021EA001844. [Google Scholar] [CrossRef]
- He, M.; Yan, W.; Chang, Y.; Liu, K.; Liu, X. Fundamental infrared absorption features of α-quartz: An unpolarized single-crystal absorption infrared spectroscopic study. Vib. Spectrosc. 2019, 101, 52–63. [Google Scholar] [CrossRef]
- Sokolik, I.N.; Toon, O.B. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res. Atmos. 1999, 104, 9423–9444. [Google Scholar] [CrossRef]
- Bichon, J.; Lavancier, M.; Petitprez, D.; Deguine, A.; Hourlier, D.; Deboudt, K.; Herbin, H.; Ducournau, G.; Peretti, R.; Eliet, S. Complex refractive indices in the TeraHertz domain of samples from atmospheric aerosol sources. In Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, Chengdu, China, 29 August–3 September 2021. [Google Scholar]
- Minamoto, Y.; Nakamura, K.; Wang, M.; Kawai, K.; Ohara, K.; Noda, J.; Davaanyam, E.; Sugimoto, N.; Kai, K. Large-scale dust event in East Asia in May 2017: Dust emission and transport from multiple source regions. Sci. Online Lett. Atmos. 2018, 14, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Xuan, J.; Sokolik, I.N. Characterization of sources and emission rates of mineral dust in Northern China. Atmos. Environ. 2002, 36, 4863–4876. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50, 388. [Google Scholar] [CrossRef]
- Plans for Metop-A End of Life|EUMETSAT. Available online: https://www.eumetsat.int/plans-metop-end-life (accessed on 16 December 2021).
- Wang, F.; Yang, T.; Wang, Z.; Cao, J.; Liu, B.; Liu, J.; Chen, S.; Liu, S.; Jia, B.; Chan, L.; et al. A Comparison of the Different Stages of Dust Events over Beijing in March 2021: The Effects of the Vertical Structure on Near-Surface Particle Concentration. Remote Sens. 2021, 13, 3580. [Google Scholar] [CrossRef]
- She, L.; Xue, Y.; Guang, J.; Che, Y.; Fan, C.; Li, Y.; Xie, Y. Towards a comprehensive view of dust events from multiple satellite and ground measurements: Exemplified by the May 2017 East Asian dust storm. Nat. Hazards Earth Syst. Sci. 2018, 18, 3187–3201. [Google Scholar] [CrossRef] [Green Version]
Mineral Group | Mineral Name | Molecular Assignment | Central | References |
---|---|---|---|---|
Tectosilicates | Quartz | Si-O Symmetrical Stretching | 778, 795 | [54,55,60] |
Si-O Asymmetrical Stretching | 1080, 1102, 1177 | |||
Phyllosilicates | Illite | -O-H Bending | 916 | [56,57] |
Si-O Asymmetrical Stretching | 1033 | |||
Carbonates | Calcite | -C-O Asymmetrical Stretching | 879 to 904 | [58,59] |
Mean Mass Weight per Half-Day (%) | Mean RMS | Mean | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | Tec | Phy | Carb | ||||||||||||
I | II | III | I | II | III | I | II | III | I | II | III | I | II | III | |
3D | 52.0 | 23.5 | - | 43.0 | 70.4 | - | 5.0 | 6.1 | - | 0.029 | 0.018 | - | 0.357 | 0.706 | - |
3N | 46.0 | 10.8 | - | 48.5 | 82.3 | - | 5.5 | 6.9 | - | 0.017 | 0.018 | - | 0.477 | 0.631 | - |
4D | 55.4 | 20.2 | - | 39.5 | 74.3 | - | 5.1 | 5.5 | - | 0.029 | 0.018 | - | 0.368 | 0.555 | - |
4N | 50.8 | 12.5 | - | 46.1 | 81.2 | - | 3.1 | 6.3 | - | 0.014 | 0.015 | - | 0.574 | 0.456 | - |
5D | 37.9 | 20.3 | 27.5 | 55.4 | 74.1 | 67.3 | 6.7 | 5.6 | 5.2 | 0.013 | 0.021 | 0.033 | 0.667 | 0.603 | 0.515 |
5N | 43.9 | 17.2 | 17.2 | 50.8 | 76.2 | 78.6 | 5.3 | 6.6 | 4.5 | 0.015 | 0.014 | 0.008 | 0.406 | 0.539 | 0.529 |
6D | 57.0 | 23.5 | 23.4 | 38.4 | 69.8 | 72.9 | 4.6 | 6.7 | 3.7 | 0.045 | 0.015 | 0.016 | 0.325 | 0.702 | 0.916 |
6N | 45.1 | 23.6 | - | 51.1 | 69.5 | - | 3.8 | 6.9 | - | 0.014 | 0.016 | - | 0.407 | 0.516 | - |
Mean | 48.5 | 19.0 | 22.7 | 46.6 | 74.7 | 72.9 | 4.9 | 6.3 | 4.4 | 0.022 | 0.017 | 0.019 | 0.448 | 0.589 | 0.653 |
STD | 6.0 | 4.7 | 4.2 | 5.6 | 4.6 | 4.6 | 1.0 | 0.5 | 0.6 | 0.011 | 0.002 | 0.011 | 0.111 | 0.083 | 0.186 |
Mean Mass Weight per Half-Day (%) | Mean RMS | Mean | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | Tec | Phy | Carb | ||||||||||||
I | II | III | I | II | III | I | II | III | I | II | III | I | II | III | |
14N | - | 26.6 | - | - | 65.1 | - | - | 8.3 | - | - | 0.014 | - | - | 0.958 | - |
15D | - | 16.1 | - | - | 75.9 | - | - | 8.0 | - | - | 0.016 | - | - | 0.971 | - |
15N | - | 22.4 | 44.1 | - | 69.3 | 50.2 | - | 7.1 | 5.2 | - | 0.017 | 0.010 | - | 0.698 | 0.967 |
16D | 21.9 | 17.0 | 40.1 | 68.1 | 76.4 | 54.7 | 9.0 | 6.8 | 6.4 | 0.020 | 0.015 | 0.011 | 0.833 | 0.943 | 0.72 |
16N | - | 26.0 | - | - | 66.9 | - | - | 7.4 | - | - | 0.020 | - | - | 0.731 | - |
17D | 23.8 | 23.6 | - | 68.8 | 69.9 | - | 7.4 | 6.4 | - | 0.019 | 0.017 | - | 0.892 | 0.976 | - |
17N | 28.8 | 26.6 | - | 62.0 | 66.7 | - | 6.8 | 6.3 | - | 0.025 | 0.016 | - | 0.786 | 0.776 | - |
18D | 26.8 | 24.4 | - | 67.0 | 69.4 | - | 6.2 | 6.2 | - | 0.016 | 0.015 | - | 1.024 | 1.002 | - |
Mean | 25.3 | 22.8 | 42.1 | 66.5 | 70.0 | 52.5 | 7.4 | 7.1 | 5.8 | 0.020 | 0.016 | 0.011 | 0.884 | 0.882 | 0.841 |
STD | 2.7 | 3.9 | 2.0 | 2.6 | 3.9 | 2.2 | 1.0 | 0.7 | 0.6 | 0.004 | 0.002 | 0.011 | 0.089 | 0.117 | 0.124 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alalam, P.; Deschutter, L.; Al Choueiry, A.; Petitprez, D.; Herbin, H. Aerosol Mineralogical Study Using Laboratory and IASI Measurements: Application to East Asian Deserts. Remote Sens. 2022, 14, 3422. https://doi.org/10.3390/rs14143422
Alalam P, Deschutter L, Al Choueiry A, Petitprez D, Herbin H. Aerosol Mineralogical Study Using Laboratory and IASI Measurements: Application to East Asian Deserts. Remote Sensing. 2022; 14(14):3422. https://doi.org/10.3390/rs14143422
Chicago/Turabian StyleAlalam, Perla, Lise Deschutter, Antoine Al Choueiry, Denis Petitprez, and Hervé Herbin. 2022. "Aerosol Mineralogical Study Using Laboratory and IASI Measurements: Application to East Asian Deserts" Remote Sensing 14, no. 14: 3422. https://doi.org/10.3390/rs14143422
APA StyleAlalam, P., Deschutter, L., Al Choueiry, A., Petitprez, D., & Herbin, H. (2022). Aerosol Mineralogical Study Using Laboratory and IASI Measurements: Application to East Asian Deserts. Remote Sensing, 14(14), 3422. https://doi.org/10.3390/rs14143422