Contributions of Climatic and Anthropogenic Drivers to Net Primary Productivity of Vegetation in the Mongolian Plateau
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. Data
3.2. Methodology
3.2.1. Data Pre-Processing
3.2.2. ANPP Estimation
3.2.3. PNPP Estimation
3.2.4. Trend Analysis
3.2.5. Hurst Index
3.2.6. Quantification of the Impacts of Climate Change and Human Activities on ANPP
3.2.7. Partial Correlation Analysis
4. Results and Discussion
4.1. Verification of the Simulation Accuracy of ANPP and PNPP
4.2. Characteristics of the Spatiotemporal Variation in Vegetation NPP
4.3. Quantification of the Impact Areas of Climate Change and Human Activities on the ANPP
4.4. Relationship between Changes in Vegetation ANPP and Meteorological Factors
4.5. Relationship between Changes in Vegetation ANPP and Human Activities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Linger, E.; Hogan, J.A.; Cao, M.; Zhang, W.F.; Yang, X.F.; Hu, Y.H. Precipitation influences on the net primary productivity of a tropical seasonal rainforest in Southwest China: A 9-year case study. For. Ecol. Manag. 2020, 467, 118153. [Google Scholar] [CrossRef]
- Sun, H.Z.; Chen, Y.B.; Xiong, J.N.; Ye, C.C.; Yong, Z.W.; Wang, Y.; He, D.; Xu, S.C. Relationships between climate change, phenology, edaphic factors, and net primary productivity across the Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102708–102718. [Google Scholar] [CrossRef]
- Alton, P.B. Representativeness of global climate and vegetation by carbon-monitoring networks; implications for estimates of gross and net primary productivity at biome and global levels. Agric. For. Meteorol. 2020, 290, 108017–108031. [Google Scholar] [CrossRef]
- Chi, C.; Taejin, P.; Wang, X.H.; Piao, S.L.; Xu, B.D.; Chaturvedi, R.K.; Richard, F.; Victor, B.; Philippe, C.; Rasmus, F.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar]
- Bao, G.; Chen, J.Q.; Chopping, M.; Bao, Y.H.; Bayarsaikhan, S.; Dorjsuren, A.; Tuya, A.; Jirigala, B.; Qin, Z.H. Dynamics of net primary productivity on the Mongolian Plateau: Joint regulations of phenology and drought. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 85–97. [Google Scholar] [CrossRef]
- Xiao, X.; Melillo, J.M.; Kicklighter, D.W.; Pan, Y.; Iii, J. Net primary production of terrestrial ecosystems in China and its equilibrium response to changes in climate and atmospheric CO concentration. Acta Phytoecol. Sin. 1996, 22, 97–118. [Google Scholar]
- Zhang, Y.; Wang, Q.; Wang, Z.; Yang, Y.; Li, J. Impact of human activities and climate change on the grassland dynamics under different regime policies in the Mongolian Plateau. Sci Total Environ. 2020, 698, 134304. [Google Scholar] [CrossRef]
- Lieth, H.; Robert, H. Whittaker, Primary Productivity of the Biosphere; Springer: Berlin/Heidelberg, Germany, 1975. [Google Scholar]
- Mao, D.H.; Wang, Z.M.; Wu, C.S.; Song, K.S.; Ren, C.Y. Examining forest net primary productivity dynamics and driving forces in northeastern China during 1982–2010. Chin. Geogr. Sci. 2014, 24, 631–646. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Yang, P.Z.; Zhang, Z.X.; Zhang, W.; Wang, Z.Q.; Zhang, Z.Y.; Ren, H.Y.; Zhou, R.L.; Wen, Z.M.; Hu, T.M. Diverse responses of grassland dynamics to climatic and anthropogenic factors across the different time scale in China. Ecol. Indic. 2021, 132, 108341–108356. [Google Scholar] [CrossRef]
- Li, J.G.; Wang, Y.; Liu, L.L. Responses of the Terrestrial Ecosystem Productivity to Droughts in China. Front. Earth Sci. 2020, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Ma, X.; Dou, X.; Zhu, J.; Zhao, C. Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia. Sci. Total Environ. 2021, 796, 149055–149070. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Dai, E.F.; Zheng, D.; Wang, Y.H.; Ma, L.; Tong, M. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity? Ecol. Indic. 2020, 112, 106013–106024. [Google Scholar] [CrossRef]
- Jiang, Y.; Guo, J.; Peng, Q.; Guan, Y.; Zhang, R. The effects of climate factors and human activities on net primary productivity in Xinjiang. Int. J. Biometeorol. 2020, 64, 765–777. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; Vanzyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid. Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, J.N.; Zhang, Y.C.; Cheng, W.M.; He, Y.C.; Ye, C.C.; He, W. Quantitative Assessment of the Effects of Climate Change and Human Activities on Grassland NPP in Altay Prefecture. J. Resour. Ecol. 2021, 12, 743–756. [Google Scholar]
- Sun, Q.L.; Li, B.L.; Zhou, C.H.; Fei, L.; Zhang, Z.J.; Ding, L.L.; Zhang, T.; Xu, L.L. A systematic review of research studies on the estimation of net primary productivity in the Three-River Headwater Region, China. J. Geogr. Sci. 2017, 27, 161–182. [Google Scholar] [CrossRef]
- Abdelrahim, E.J.; Wu, W.C.; Boloorani, A.D.; Salem, H.M.; Nazeer, M.; Fadoul, S.M.; Khan, M.S. Assessment the Influence of Climate and Human Activities in Vegetation Degradation using GIS and Remote Sensing Techniques. Contemp. Probl. Ecol. 2020, 13, 685–693. [Google Scholar] [CrossRef]
- Chen, A.F.; Li, R.Y.; Wang, H.L.; He, B. Quantitative assessment of human appropriation of aboveground net primary production in China. Ecol. Model. 2015, 312, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Gang, C.C.; Zhang, Y.Z.; Wang, Z.Q.; Chen, Y.Z.; Yang, Y.; Li, J.L.; Cheng, J.M.; Qi, J.G.; Odeh, I. Modeling the dynamics of distribution, extent, and NPP of global terrestrial ecosystems in response to future climate change. Glob. Planet. Chang. 2017, 148, 153–165. [Google Scholar] [CrossRef]
- Zhao, C.L.; Yan, Y.; Ma, W.Y.; Shang, X.; Chen, J.G.; Rong, Y.J.; Xie, T.; Yuan, Q. RESTREND-based assessment of factors affecting vegetation dynamics on the Mongolian Plateau. Ecol. Model. 2021, 440, 109415–109420. [Google Scholar] [CrossRef]
- Jin, H.; Bao, G.; Chen, J.Q.; Chopping, M.; Jin, E.; Mandakh, U.; Jiang, K.; Huang, X.J.; Bao, Y.H.; Vandansambuu, B. Modifying the maximal light-use efficiency for enhancing predictions of vegetation net primary productivity on the Mongolian Plateau. Int. J. Remote Sens. 2020, 41, 3740–3760. [Google Scholar] [CrossRef]
- Luo, M.; Meng, F.H.; Sa, C.L.; Duan, Y.C.; Bao, Y.H.; Liu, T.; De, M.P. Response of vegetation phenology to soil moisture dynamics in the Mongolian Plateau. Catena 2021, 206, 105505–105515. [Google Scholar] [CrossRef]
- Ryu, Y.; Jiang, C.Y.; Kobayashi, H.; Detto, M. MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sens. Environ. Interdiscip. J. 2018, 204, 812–825. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.Y.; Chen, X.D.; Xie, S.; Gao, Y. Fine Land-Cover Mapping in China Using Landsat Datacube and an Operational SPECLib-Based Approach. Remote Sens. 2019, 11, 1056. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.D.; Wu, H.; Jiang, X.G. Temporal and Spatial Change Monitoring of Drought Grade Based on ERA5 Analysis Data and BFAST Method in the Belt and Road Area during 1989–2017. Adv. Meteorol. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.; He, N.; Wang, Q.; Gao, Y.; Wen, D.; Li, S.; Niu, S.; Ge, J. Carbon storage in China’s terrestrial ecosystems: A synthesis. Sci. Rep. 2018, 8, 2806–2819. [Google Scholar] [CrossRef]
- Lieth, H. Modeling the primary productivity of the world. Nat. Resour. 1975, 14, 237–263. [Google Scholar]
- Li, H.; Zhang, H.; Li, Q.; Zhao, J.; Guo, X.; Ying, H.; Deng, G.R.; Wu, R.H.; Wang, S. Vegetation Productivity Dynamics in Response to Climate Change and Human Activities under Different Topography and Land Cover in Northeast China. Remote Sens. 2021, 13, 975. [Google Scholar] [CrossRef]
- Jiapaer, G.; Liang, S.L.; Yi, Q.X.; Liu, J.P. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar]
- Dong, G.; Zhao, F.Y.; Chen, J.Q.; Zhang, Y.Q.; Shao, C.L. Non-climatic component provoked substantial spatiotemporal changes of carbon and water use efficiency on the Mongolian Plateau. Environ. Res. Lett. 2020, 15, 095009–095025. [Google Scholar] [CrossRef]
- Groisman, P.; Shugart, H.; Kicklighter, D.; Henebry, G.; Tchebakova, N.; Maksyutov, S.; Monier, E.; Gutman, G.; Gulev, S.; Qi, J. Northern Eurasia Future Initiative (NEFI): Facing the challenges and pathways of global change in the twenty-first century. Prog. Earth Planet. Sci. 2017, 4, 41–88. [Google Scholar] [CrossRef] [Green Version]
- Lei, T.J.; Feng, J.; Juan, L.; Wang, J.B.; Song, H.Q.; Song, W.L.; Gao, X.F. Net Primary Productivity Loss under different drought levels in different grassland ecosystems. J. Environ. Manag. 2020, 274, 111144–111155. [Google Scholar] [CrossRef]
- Medková, H.; Vačkář, D.; Weinzettel, J. Appropriation of potential net primary production by cropland in terrestrial ecoregions. J. Clean. Prod. 2017, 150, 294–300. [Google Scholar] [CrossRef]
- Liu, F.H.; Ye, X.H.; Guo, Q.; Li, X.H.; Liu, J. Spatio-temporal variation of carbon and water use efficiency of different landcover in the Poyang Lake Basin and their correlations with climate factors. Acta Ecol. Sin. 2021, 41, 694–706. [Google Scholar]
- Yuan, M.; Zhu, Q.; Zhang, J.; Liu, J.; Chen, H.; Peng, C.; Li, P.; Li, M.; Wang, M.; Zhao, P. Global response of terrestrial gross primary productivity to climate extremes. Sci. Total Environ. 2021, 750, 142337–142350. [Google Scholar] [CrossRef]
- Tu, Y.; Jiang, L.L.; Liu, R.; Xiao, Z.L.; Min, J. Spatiotemporal change of vegetation NDVI and its driving forces in China during 1988–2015. Trans. Chin. Soc. Agric. Eng. 2021, 37, 75–84. [Google Scholar]
- Batunacun; Claas, N.; Hu, Y.; Tobia, L. Land-use change and land degradation on the Mongolian Plateau from 1975 to 2015—A case study from Xilingol, China. Land Degrad. Dev. 2018, 29, 1595–1606. [Google Scholar] [CrossRef]
- Liu, X.D.; Ma, Q.H.; Yu, H.Y.; Li, Y.B.; Li, L.; Miao, Q.; Wu, W.J.; Zhang, F.; Wang, Y.H.; Zhou, G.S.; et al. Climate warming-induced drought constrains vegetation productivity by weakening the temporal stability of the plant community in an arid grassland ecosystem. Agric. For. Meteorol. 2021, 307, 108526–108536. [Google Scholar] [CrossRef]
- Piao, S.L.; Nan, H.J.; Huntingford, C.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Peng, S.S.; Ahlstrom, A.; Canadell, J.G.; Cong, N.; et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 2014, 5, 5018. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.T.; Liu, G.X.; Yang, Y.; Song, X.Y.; Bai, H.H. Daynamic monitoring of net primary productivity and its response toclimate factors in native grassland in Inner Mongolia using a light-use efficiency model. Acta Partaculture Sin. 2020, 29, 1–10. [Google Scholar]
- Jiang, H.; Xu, X.; Guan, M.; Wang, L.; Huang, Y.; Jiang, Y. Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015. Sci. Total Environ. 2020, 718, 134871. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Brown, D.G.; Chen, J.Q. Drivers of the dynamics in net primary productivity across ecological zones on the Mongolian Plateau. Landsc. Ecol. 2013, 28, 725–739. [Google Scholar] [CrossRef]
- Environmental Protection Department. Ministry of Environmental Protection issues Outlines of National Ecological Vulnerability Protection Plan. Chin. Geogr. Sci. 2009, 22, 1–25. Available online: http://www.gov.cn/gzdt/2008-10/09/content_1116192.htm (accessed on 26 March 2021).
- Guo, E.L.; Wang, Y.F.; Wang, C.L.; Sun, Z.Y.; Bao, Y.L.; Mandula, N.; Jirigala, B.; Bao, Y.H.; Li, H. NDVI Indicates Long-Term Dynamics of Vegetation and Its Driving Forces from Climatic and Anthropogenic Factors in Mongolian Plateau. Remote Sens. 2021, 13, 688. [Google Scholar] [CrossRef]
- Miao, L.J.; Sun, Z.L.; Ren, Y.J.; Schierhorn, F.; Müller, D. Grassland greening on the Mongolian Plateau despite higher grazing intensity. Land Degrad. Dev. 2020, 32, 792–802. [Google Scholar]
- Schönbach, P.; Wan, H.W.; Gierus, M.; Bai, Y.F.; Müller, K.; Lin, L.J.; Susenbeth, A.; Taube, F. Grassland responses to grazing: Effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant Soil 2010, 340, 103–115. [Google Scholar] [CrossRef]
Scenarios | SANPP | SPNPP | SHNPP | The Relative Impact of Climate Change and Human Activities |
---|---|---|---|---|
1 | + | + | + | Climate change dominates vegetation recovery (CDR) |
2 | + | + | − | Climate change and human activities dominate vegetation recovery (BDR) |
3 | + | − | − | Human activities dominate vegetation recovery (HDR) |
4 | − | − | − | Climate change dominates vegetation degradation (CDD) |
5 | − | − | + | Climate change and human activities dominate vegetation degradation (BDD) |
6 | − | + | + | Human activities dominate vegetation degradation (HDD) |
Model Evaluation Scenarios | ZGS Model Area km2 (Proportion) | TM Model Area km2 (Proportion) |
---|---|---|
CDR | 2.92 × 105 (11.8%) | 8.54 × 105 (34.5%) |
HDR | 7.91 × 105 (31.9%) | 8.84 × 105 (35.7%) |
BDR | 1.32 × 106 (53.3%) | 6.64 × 105 (26.8%) |
CDD | 3.63 × 104 (1.5%) | 4.68 × 104 (1.9%) |
HDD | 2.48 × 104 (1%) | 2.20 × 104 (0.9%) |
BDD | 1.27 × 104 (0.5%) | 5.07 × 103 (0.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, C.; Luo, M.; Meng, F.; Sa, C.; Yuan, Z.; Bao, Y. Contributions of Climatic and Anthropogenic Drivers to Net Primary Productivity of Vegetation in the Mongolian Plateau. Remote Sens. 2022, 14, 3383. https://doi.org/10.3390/rs14143383
Yin C, Luo M, Meng F, Sa C, Yuan Z, Bao Y. Contributions of Climatic and Anthropogenic Drivers to Net Primary Productivity of Vegetation in the Mongolian Plateau. Remote Sensing. 2022; 14(14):3383. https://doi.org/10.3390/rs14143383
Chicago/Turabian StyleYin, Chaohua, Min Luo, Fanhao Meng, Chula Sa, Zhihui Yuan, and Yuhai Bao. 2022. "Contributions of Climatic and Anthropogenic Drivers to Net Primary Productivity of Vegetation in the Mongolian Plateau" Remote Sensing 14, no. 14: 3383. https://doi.org/10.3390/rs14143383
APA StyleYin, C., Luo, M., Meng, F., Sa, C., Yuan, Z., & Bao, Y. (2022). Contributions of Climatic and Anthropogenic Drivers to Net Primary Productivity of Vegetation in the Mongolian Plateau. Remote Sensing, 14(14), 3383. https://doi.org/10.3390/rs14143383