Influence of Charcoal Production on Forest Degradation in Zambia: A Remote Sensing Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
2.3.1. Detecting Annual Tree Cover Change
2.3.2. Inspecting Intensity of Charcoal-Production-Driven Forest Degradation
2.3.3. Analyzing the Post-Disturbance LCLU Trajectories
2.3.4. Quantifying the Contribution of Forest Loss to Urban Charcoal Demand in Lusaka
3. Results
3.1. Forest Degradation Patterns from 2006 to 2020
3.2. Intensity and Spatial Patterns of Charcoal-Production-Induced Forest Degradation
3.3. Post-Disturbance LCLU Trajectories
3.4. Contribution of Forest Degradation to Urban Charcoal Demand
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Charcoal Transition: Greening the Charcoal Value Chain to Mitigate Climate Change and Improve Local Livelihoods; van Dam, J., Ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- International Energy Agency. Africa Energy Outlook 2019—Analysis Scenarios Africa Energy Outlook; International Energy Agency: Paris, France, July 2019. [Google Scholar]
- Houghton, R.A.; Hall, F.; Goetz, S.J. Importance of biomass in the global carbon cycle. J. Geophys. Res. Biogeosci. 2009, 114, G00E03. [Google Scholar] [CrossRef]
- Pearson, T.R.H.; Brown, S.; Murray, L.; Sidman, G. Greenhouse gas emissions from tropical forest degradation: An underestimated source. Carbon Balance Manag. 2017, 12, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullock, E.L.; Woodcock, C.E.; Olofsson, P. Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis. Remote Sens. Environ. 2020, 238, 110968. [Google Scholar] [CrossRef]
- Zulu, L.C.; Richardson, R.B. Charcoal, livelihoods, and poverty reduction: Evidence from sub-Saharan Africa. Energy Sustain. Dev. 2013, 17, 127–137. [Google Scholar] [CrossRef]
- UN-Habitat. The State of African Cities: Re-Imagining Sustainable Urban Transitions; UN-Habitat: Nairobi, Kenya, 2014. [Google Scholar]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Grant, R. Africa: Geographies of Change; Grant, R., Ed.; Oxford University Press: Oxford, UK, 2015; p. 356. [Google Scholar]
- Eckholm, E.P. The Other Energy Crisis, Firewood; World Watch Institute: Washington, DC, USA, 1975. [Google Scholar]
- Anderson, D.; Fishwick, R. Fuelwood Consumption and Deforestation in African Countries; Staff Working Paper 704; World Bank: Washington, DC, USA, 1984. [Google Scholar]
- Mearns, R. Beyond the Woodfuel Crisis: People, Land and Trees in Africa. In Development Perspectives for the 1990s; Prendergast, R., Singer, H.W., Eds.; Palgrave Macmillan: London, UK, 1991. [Google Scholar]
- Cline-Cole, R. Knowledge claims and landscape: Alternative views of the fuelwood—Degradation nexus in northern Nigeria? Environ. Plan. D Soc. Space 1998, 16, 311–346. [Google Scholar] [CrossRef]
- Ribot, J. A history of fear: Imagining deforestation in the West African dryland forests. Glob. Ecol. Biogeogr. 1999, 8, 291–300. [Google Scholar] [CrossRef]
- Mwampamba, T.H.; Ghilardi, A.; Sander, K.; Chaix, K.J. Dispelling common misconceptions to improve attitudes and policy outlook on charcoal in developing countries. Energy Sustain. Dev. 2013, 17, 75–85. [Google Scholar] [CrossRef]
- Barnes, D.F.; Krutilla, K.; Hyde, W. The Urban Household Energy Transition: Energy, Poverty, and the Environment in the Developing World; World Bank: Washington, DC, USA, 2002. [Google Scholar]
- Arnold, M.; Köhlin, G.; Persson, R. Woodfuels, livelihoods, and policy interventions: Changing Perspectives. World Dev. 2006, 34, 596–611. [Google Scholar] [CrossRef]
- FAO. Urban and Peri-Urban Forestry in Africa: The Outlook for Woodfuel Urban and Peri-Urban Forestry Working Paper n°4; FAO: Rome, Italy, 2012; 95p. [Google Scholar]
- Schure, J.; Levang, P.; Wiersum, K.F. Producing Woodfuel for Urban Centers in the Democratic Republic of Congo: A Path Out of Poverty for Rural Households? World Dev. 2014, 64, S80–S90. [Google Scholar] [CrossRef]
- Smith, H.E.; Jones, D.; Vollmer, F.; Baumert, S.; Ryan, C.M.; Woollen, E.; Lisboa, S.N.; Carvalho, M.; Fisher, J.A.; Luz, A.C.; et al. Urban energy transitions and rural income generation: Sustainable opportunities for rural development through charcoal production. World Dev. 2019, 113, 237–245. [Google Scholar] [CrossRef]
- Pelletier, J.; Hamalambo, B.; Trainor, A.; Barrett, C.B. How land tenure and labor relations mediate charcoal’s environmental footprint in Zambia: Implications for sustainable energy transitions. World Dev. 2021, 146, 105600. [Google Scholar] [CrossRef]
- Kissinger, G.; Herold, M. Drivers of Deforestation and Forest Degradation: A Synthesis Report for REDD+Policymakers; Lexeme Consulting: Vancouver, BC, Canada, 2012. [Google Scholar]
- Chidumayo, E.N.; Gumbo, D.J. The environmental impacts of charcoal production in tropical ecosystems of the world: A synthesis. Energy Sustain. Dev. 2013, 17, 86–94. [Google Scholar] [CrossRef]
- Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 2012, 7, 044009. [Google Scholar] [CrossRef]
- FAO. Assessing forest degradation: Towards the development of globally applicable guidelines. In Forest Resources Assessment; FAO: Rome, Italy, 2011. [Google Scholar]
- Thompson, I.D.; Guariguata, M.R.; Okabe, K.; Bahamondez, C.; Nasi, R.; Heymell, V.; Sabogal, C. An operational framework for defining and monitoring forest degradation. Ecol. Soc. 2013, 18, 20. [Google Scholar] [CrossRef]
- Bailis, B.; Drigo, R.; Ghilardi, A.; Masera, O. The carbon footprint of traditional woodfuels. Nat. Clim. Change 2015, 5, 266–272. [Google Scholar] [CrossRef]
- Sedano, F.; Lisboa, S.N.; Duncanson, L.; Ribeiro, N.; Sitoe, A.; Sahajpal, R.; Hurtt, G.; Tucker, C.J. The connection between forest degradation and urban energy demand in sub-Saharan Africa: A characterization based on high-resolution remote sensing data. Environ. Res. Lett. 2021, 16, 064020. [Google Scholar] [CrossRef]
- Sedano, F.; Silva, J.A.; Machoco, R.; Meque, C.H.; Sitoe, A.; Ribeiro, N.; Anderson, K.; Ombe, Z.A.; Baule, S.H.; Tucker, C.J. The impact of charcoal production on forest degradation: A case study in Tete, Mozambique. Environ. Res. Lett. 2016, 11, 094020. [Google Scholar] [CrossRef]
- Sedano, F.; Lisboa, S.N.; Duncanson, L.; Ribeiro, N.; Sitoe, A.; Sahajpal, R.; Hurtt, G.; Tucker, C.J. Monitoring Forest degradation from charcoal production with historical Landsat imagery. A case study in southern Mozambique. Environ. Res. Lett. 2020, 15, 015001. [Google Scholar]
- Bolognesi, M.; Vrieling, A.; Rembold, F.; Gadain, H. Rapid mapping and impact estimation of illegal charcoal production in southern Somalia based on WorldView-1 imagery. Energy Sustain. Dev. 2015, 25, 40–49. [Google Scholar] [CrossRef]
- Dons, K.; Smith-Hall, C.; Meilby, H.; Fensholt, R. Operationalizing measurement of forest degradation: Identification and quantification of charcoal production in tropical dry forests using very high resolution satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 18–27. [Google Scholar] [CrossRef]
- Sedano, F.; Lisboa, S.N.; Duncanson, L.; Ribeiro, N.; Sitoe, A.; Sahajpal, R.; Hurtt, G.; Tucker, C.J. Monitoring intra and inter annual dynamics of forest degradation from charcoal production in Southern Africa with Sentinel—2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102184. [Google Scholar] [CrossRef]
- Frost, P. The Ecology of Miombo Woodlands in Book the Miombo in Transition: Woodlands and Welfare in Africa, 1st ed.; Campbell, B., Ed.; Center for International Forestry Research: Bogor, Indonesia, 1996; pp. 11–58. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Zambia Statistics Agency; Ministry of Health (MOH) Zambia; ICF. Zambia Demographic and Health Survey; Zambia Statistics Agency: Lusaka, Zambia; Ministry of Health: Maputo, Mozambique; ICF: Amsterdam, The Netherlands, 2019.
- FAO. Global Forest Resources Assessment Main Report; FAO: Rome, Italy, 2020. [Google Scholar]
- IFAD. Country Strategic Opportunities Programme; Republic of Zambia; International Fund for Agricultural Development: Rome, Italy, 2011. [Google Scholar]
- Martins, M.; Atanassov, B.; Mirira, R. Produção Sustentável de Carvão Vegetal. In Teoria e Prática na Definição, Implementação e Avaliação de Formas de Terra Melhorados IBEK, no Distrito de MABALANE—Província de Gaza; Província de Gaza: Maputo, Mozambique, 2016. [Google Scholar]
- Carsan, S.; Orwa, C.; Harwood, C.; Kindt, R.; Stroebe, L.A.; Neufeldt, H.; Jamnadass, R. African Wood Density Database; World Agroforestry Centre: Nairobi, Kenya, 2012. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth & Brooks/Cole Advanced Books & Software: Monterey, CA, USA, 1984. [Google Scholar]
- Richards, J.A.; Jia, X. An Introduction. Remote Sensing Digital Image Analysis; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423); United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019. [Google Scholar]
- Environmental Institute, Energy and Development Group. Charcoal Potential in Southern Africa (CHAPOSA) Stockholm; Environmental Institute, Energy and Development Group: Stockholm, Sweden, 2012; pp. 1–88. [Google Scholar]
- Chidumayo, E.N. Is charcoal production in Brachystegia-Julbernardia woodlands of Zambia sustainable? Biomass Bioenergy 2019, 125, 1–7. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Chidumayo, E.N. Zambian Charcoal Production. Energy Policy 1993, 21, 586–597. [Google Scholar] [CrossRef]
- Ahrends, A.; Burgess, N.D.; Milledge, S.A.H.; Bulling, M.T.; Fisher, B.; Smart, J.C.R.; Clarke, G.P.; Mhoro, B.E.; Lewis, S.L. Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proc. Natl Acad. Sci. USA 2010, 107, 14556–14561. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.E.M.; Kohlin, G.; Persson, R.; Shepherd, G. Fuelwood Revisited: What Has Changed in the Last Decade? CIFOR Occasional Paper No.39; CIFOR: Bogor, Indonesia, 2003; 35p. [Google Scholar]
- Mulenga, B.P.; Hadunka, P.; Ricardson, R.B. Rural households’ participation in charcoal production in Zambia: Does agricultural productivity play a role? J. For. Econ. 2017, 26, 56–62. [Google Scholar] [CrossRef]
- Vinya, R.; Syampungasi, S.; Kasumu, E.C.; Monde, C.; Kasubika, R. Preliminary Study on the Drivers of Deforestation and Potential for REDD+ in Zambia; A consultancy report prepared for the Forestry Department and FAO under the national UN-REDD+ Programme Ministry of Lands & Natural Resources; FAO/Zambian Ministry of Lands and Natural Resources: Lusaka, Zambia, 2011.
- Bailis, R.; Wang, Y.; Drigo, R.; Ghilardi, A.; Masera, O. Getting the numbers right: Revisiting woodfuel sustainability in the developing world. Environ. Res. Lett. 2017, 12, 115002. [Google Scholar] [CrossRef]
Task | Imagery | Locations | Temporal Resolution |
---|---|---|---|
Detection of charcoal-related tree cover changes | Medium resolution (30 m) | Kapiri Mposhi; Katarino; Mkusi | Single-date cloud-free images (June–September) for each year between 1998 and 2020. |
Attribution and analysis of charcoal-driven forest degradation | High (2 m) and very high (0.5 m) resolution | Katarino; Mkusi | Cloud-free images: Katarino (2014, 2015, 2017 and 2018); Mkusi (2012, 2013, 2015, 2016, 2017 and 2018) |
High-resolution maps of tree cover change in charcoal production areas | High (2 m) resolution | Katarino; Mkusi | Cloud-free images: Katarino (2009 and 2018); Mkusi (2012 and 2016). |
Annual LCLU maps of forest reserves to define LCLU trajectories | Medium resolution (30 m) | Kapiri Mposhi; Katarino; Mkusi | Single-date cloud-free images (June–September) for each year between 1998 and 2020. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedano, F.; Mizu-Siampale, A.; Duncanson, L.; Liang, M. Influence of Charcoal Production on Forest Degradation in Zambia: A Remote Sensing Perspective. Remote Sens. 2022, 14, 3352. https://doi.org/10.3390/rs14143352
Sedano F, Mizu-Siampale A, Duncanson L, Liang M. Influence of Charcoal Production on Forest Degradation in Zambia: A Remote Sensing Perspective. Remote Sensing. 2022; 14(14):3352. https://doi.org/10.3390/rs14143352
Chicago/Turabian StyleSedano, Fernando, Abel Mizu-Siampale, Laura Duncanson, and Mengyu Liang. 2022. "Influence of Charcoal Production on Forest Degradation in Zambia: A Remote Sensing Perspective" Remote Sensing 14, no. 14: 3352. https://doi.org/10.3390/rs14143352
APA StyleSedano, F., Mizu-Siampale, A., Duncanson, L., & Liang, M. (2022). Influence of Charcoal Production on Forest Degradation in Zambia: A Remote Sensing Perspective. Remote Sensing, 14(14), 3352. https://doi.org/10.3390/rs14143352