Data Reliability Enhancement for Wind-Turbine-Mounted Lidars
Abstract
:1. Introduction
2. Materials and Methods
2.1. SpinnerLidar
2.2. Field Study
2.2.1. Case 1: SpinnerLidar Aligned to the Centre of the Rotor
2.2.2. Case 2: SpinnerLidar with an Offset from the Centre of the Rotor
2.2.3. Case 3: SpinnerLidar with a Misalignment Angle
3. Results
3.1. Determination of the SpinnerLidar Position
3.2. Data Availability
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Example of the Variability of the Rotational Speed of the Rotor of Wind Turbine
Appendix B. Conically Scanning Nacelle Wind Lidars
References
- Wiser, R.; Rand, J.; Seel, J.; Beiter, P.; Baker, E.; Lantz, E.; Gilman, P. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nat. Energy 2021, 6, 555–565. [Google Scholar] [CrossRef]
- Harris, M.; Bryce, D.J.; Coffey, A.S.; Smith, D.A.; Birkemeyer, J.; Knopf, U. Advance measurement of gusts by laser anemometry. J. Wind Eng. Ind. Aerodyn. 2007, 95, 1637–1647. [Google Scholar] [CrossRef]
- Borraccino, A.; Schlipf, D.; Haizmann, F.; Wagner, R. Wind field reconstruction from nacelle-mounted lidar short-range measurements. Wind Energy Sci. 2017, 2, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Held, D.P.; Mann, J. Detection of wakes in the inflow of turbines using nacelle lidars. Wind Energy Sci. 2019, 4, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Sonnenschein, C.M.; Horrigan, F.A. Signal-to-Noise Relationships for Coaxial Systems that Heterodyne Backscatter from the Atmosphere. Appl. Opt. 1971, 10, 1600. [Google Scholar] [CrossRef] [PubMed]
- Gryning, S.E.; Floors, R. Carrier-to-Noise-Threshold Filtering on Off-Shore Wind Lidar Measurements. Sensors 2019, 19, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabas, A.M.; Drobinski, P.; Flamant, P.H. Velocity Biases of Adaptive Filter Estimates in Heterodyne Doppler Lidar Measurements. J. Atmos. Ocean. Technol. 2000, 17, 1189–1202. [Google Scholar] [CrossRef]
- Beck, H.; Kühn, M. Dynamic Data Filtering of Long-Range Doppler LiDAR Wind Speed Measurements. Remote Sens. 2017, 9, 561. [Google Scholar] [CrossRef] [Green Version]
- Alcayaga, L. Filtering of pulsed lidar data using spatial information and a clustering algorithm. Atmos. Meas. Tech. 2020, 13, 6237–6254. [Google Scholar] [CrossRef]
- Herges, T.G.; Keyantuo, P. Robust Lidar Data Processing and Quality Control Methods Developed for the SWiFT Wake Steering Experiment; IOP Publishing: Visby, Sweden, 2019; Volume 1256, p. 012005. [Google Scholar] [CrossRef]
- Angelou, N.; Sjöholm, M. UniTTe WP3/MC1: Measuring the Inflow towards a Nordtank 500kW turbine using three short-range WindScanners and one SpinnerLidar; Report DTU Wind Energy E-0093; DTU Wind Energy: Roskilde, Denmark, 2015. [Google Scholar]
- Mikkelsen, T.; Angelou, N.; Hansen, K.; Sjöholm, M.; Harris, M.; Slinger, C.; Hadley, P.; Scullion, R.; Ellis, G.; Vives, G. A spinner-integrated wind lidar for enhanced wind turbine control. Wind Energy 2013, 16, 625–643. [Google Scholar] [CrossRef] [Green Version]
- Sjöholm, M.; Pedersen, A.T.; Angelou, N.; Abari, F.F.; Mikkelsen, T.; Harris, M.; Slinger, C.; Kapp, S. Full two-dimensional rotor plane inflow measurements by a spinner-integrated wind lidar. In Proceedings of the European Wind Energy Conference & Exhibition, Vienna, Austria, 4–7 February 2013. [Google Scholar]
- Conti, D.; Dimitrov, N.; Peña, A.; Herges, T. Wind Turbine Wake Characterization Using the SpinnerLidar Measurements; IOP Publishing: Torque, The Netherlands, 2020; Volume 1618. [Google Scholar] [CrossRef]
- Herges, T.G.; Maniaci, D.C.; Naughton, B.T.; Mikkelsen, T.; Sjöholm, M. High resolution wind turbine wake measurements with a scanning lidar. J. Physics Conf. Ser. 2017, 854, 012021. [Google Scholar] [CrossRef] [Green Version]
- Mikkelsen, T.; Sjöholm, M.; Astrup, P.; Peña, A.; Larsen, G.; van Dooren, M.F.; Sekar, A.P.K. Lidar Scanning of Induction Zone Wind Fields over Sloping Terrain; NAWEA WindTech; IOP Publishing: Amherst, MA, USA, 2020; Volume 1452, p. 012081. [Google Scholar] [CrossRef]
- Peña, A.; Mann, J.; Rolighed Thorsen, G. SpinnerLidarmeasurements for the CCAV52; Report DTU Wind Energy E-0177; DTU Wind Energy: Roskilde, Denmark, 2019. [Google Scholar]
- Fu, W.; Peña, A.; Mann, J. Turbulence statistics from three different nacelle lidars. Wind Energy Sci. Discuss. 2021, 2021, 1–29. [Google Scholar] [CrossRef]
- Angelou, N.; Mann, J.; Sjöholm, M.; Courtney, M. Direct measurement of the spectral transfer function of a laser based anemometer. Rev. Sci. Instrum. 2012, 83, 033111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitrov, N.; Borraccino, A.; Peña, A.; Natarajan, A.; Mann, J. Wind turbine load validation using lidar-based wind retrievals. Wind Energy 2019, 22, 1512–1533. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelou, N.; Sjöholm, M. Data Reliability Enhancement for Wind-Turbine-Mounted Lidars. Remote Sens. 2022, 14, 3225. https://doi.org/10.3390/rs14133225
Angelou N, Sjöholm M. Data Reliability Enhancement for Wind-Turbine-Mounted Lidars. Remote Sensing. 2022; 14(13):3225. https://doi.org/10.3390/rs14133225
Chicago/Turabian StyleAngelou, Nikolas, and Mikael Sjöholm. 2022. "Data Reliability Enhancement for Wind-Turbine-Mounted Lidars" Remote Sensing 14, no. 13: 3225. https://doi.org/10.3390/rs14133225
APA StyleAngelou, N., & Sjöholm, M. (2022). Data Reliability Enhancement for Wind-Turbine-Mounted Lidars. Remote Sensing, 14(13), 3225. https://doi.org/10.3390/rs14133225