Evaluation of FY-3E/HIRAS-II Radiometric Calibration Accuracy Based on OMB Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset and the RTTOV
2.1.1. FY-3E/HIRAS-II Data
2.1.2. MetOp/IASI Data
2.1.3. ERA5 Reanalysis Data
2.1.4. RTTOV Radiative Transfer Model
2.2. Data Processing and Methods
2.2.1. HIRAS-II Observation Data Processing
- (1)
- Spectral data apodization
- (2)
- Selection of clear sky pixels
2.2.2. Reanalysis Data Processing
2.2.3. IASI Observation Data Processing
- (1)
- Time and spatial match
- (2)
- Spectral match
2.2.4. Bias Evaluation Method
3. Results Analysis
3.1. FY-3E/HIRAS-II Overall Bias of OMB Distribution
3.2. The Bias of OMB Global Sample Distribution
3.3. Analysis of the OMB Consistency of Each FOV in FY-3E/HIRAS-II
3.4. Analysis of Bias of OMB with Scanning Angle Change of FY-3E/HIRAS-II Instrument
3.5. Analysis of the Change of the Bias of OMB with Day and Night
3.6. Analysis of the Bias of OMB Variation with Observation Target Temperature
3.7. Analysis of the Bias of OMB Variation with Ascending Orbit and Descending Orbit
3.8. Analysis of the Bias of OMB Variation with Latitude
3.9. Evaluation of Calibration Accuracy and Stability of FY-3E/HIRAS-II Based on OMB
3.10. Double-Difference Alignment with IASI’s Bias of OMB Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, L.; Guo, M.H.; Xu, N.; Zhang, L.J.; Liu, J.J.; Hu, X.Q.; Li, Y.; Rong, Z.G.; Zhao, Z.H. On-Orbit Response Variation Analysis of FY-3 MERSI Reflective Solar Bands Based on Dunhuang Site Calibration. J. Spectrosc. Spectral. Anal. 2012, 32, 1869–1877. [Google Scholar]
- Min, M.; Zhang, Y.; Hu, X.Q.; Dong, L.X.; Rong, Z.G. Evaluation for radiometric calibration of infrared band of FY-3A medium resolution spectral imager (MERSI) using radiometric calibration sites. J. Infrared Laser Eng. 2012, 41, 1995–2001. [Google Scholar]
- Loew, A.; Bell, W.; Brocca, L.; Bulgin, C.E.; Burdanowitz, J.; Calbet, X.; Donner, R.V.; Ghent, D.; Gruber, A.; Kaminski, T.; et al. Validation practices for satellite-based Earth observation data across communities. J. Rev. Geophys. 2017, 55, 779–817. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.H.; Hu, X.Q.; Xu, H.L.; Wu, C.Q.; Qi, C.L.; Gu, M.J. Radiation Calibration Accuracy Assessment of FY-3D Hyper-spectral Infrared Atmospheric Sounder Based on Inter-Comparison. Acta Opt. Sin. 2019, 39, 377–387. [Google Scholar]
- Yang, T.H. Tropospheric Wind Field Measurement Based on Infrared Hyperspectral Observations. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2020. [Google Scholar]
- Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D.A. Radiometric Consistency Assessment of Hyperspectral Infrared Sounders. Atmos. Meas. Tech. 2015, 8, 4831–4844. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.H.; Zhang, L.; Lu, Q.F.; Zhang, N.Q.; Wang, D. Characterization of bias in FY-4A advanced geostationary radiation imager observation from ERA5 background simulation using RTTOV. J. Acta Meteorol. Sin. 2019, 77, 911–922. [Google Scholar]
- Xu, N.; Chen, L.; Hu, X.Q.; Zhang, L.Y.; Zhang, P. Assessment and correction of on-orbit radiometric calibration for FY-3 VIRR thermal infrared channels. J. Remote Sens. 2014, 6, 2884–2897. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Hu, X.Q.; Lu, Q.F.; Zhu, A.J.; Lin, M.Y.; Sun, L.; Chen, L.; Xu, N. FY-3E: The First Operational Meteorological Satellite Mission in an Early Morning Orbit. J. Adv. Atmos. Sci. 2022, 39, 1–8. [Google Scholar] [CrossRef]
- Lee, L.; Wu, C.Q.; Qi, C.L.; Hu, X.Q.; Yuan, M.G. Solar Contamination on HIRAS Cold Calibration View and the Corrected Radiance Assessment. J. Remote Sens. 2022, 13, 19. [Google Scholar] [CrossRef]
- Holmlund, K.; Bojkov, B.; Klaes, D.; Schlussel, P. The Joint Polar System: Towards the Second Generation EUMETSAT Polar System. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2779–2782. [Google Scholar]
- Hilton, F.; Armante, R.; August, T.; Barnet, C.; Bouchard, A.; Camy-Peyret, C.; Capelle, V.; Clarisse, L.; Clerbaux, C.; Coheur, P.-L.; et al. Hyperspectral Earth Observation from IASI Five Years of Accomplishments. Bull. Am. Meteorol. Soc. 2012, 93, 347–370. [Google Scholar] [CrossRef]
- Di, D. Data Assimilation Research for Geosynchronous Interferometric Infrared Sounder onboard FengYun-4 Satellite. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2019. [Google Scholar]
- Zhang, C.M.; Gu, M.J.; Hu, Y.; Huang, P.Y.; Yang, T.H.; Huang, S.; Yang, C.L.; Shao, C.Y. A study on the retrieval of temperature and humidity profiles based on FY-3D/HIRAS infrared hyperspectral data. J. Remote Sens. 2021, 13, 2157. [Google Scholar] [CrossRef]
- Newman, S.; Carminati, F.; Lawrence, H.; Bormann, N.; Salonen, K.; Bell, W. Assessment of New Satellite Missions within the Framework of Numerical Weather Prediction. J. Remote Sens. 2020, 12, 1580. [Google Scholar] [CrossRef]
- Wang, L.K.; Goldberg, M.; Wu, X.Q.; Cao, C.Y.; Iacovazzi, R.A.; Yu, F.F.; Li, Y.P. Consistency assessment of Atmospheric Infrared Sounder and Infrared Atmospheric Sounding Interferometer radiances: Double differences versus simultaneous nadir overpasses. J. Geophys. Res.-Atmos. 2011, 116, D11. [Google Scholar] [CrossRef]
- Yin, M.T. Assessing the Sun Glint Effect on the Data Bias of CrIS Shortwave Surface Channels near 3.7 μm. Int. J. Remote Sens. 2016, 37, 356–369. [Google Scholar] [CrossRef]
- Wang, L.W.; Niu, Z.Y.; Zhang, B.L.; Tang, F.; Liang, J.H. A test of a sun glint correction method for the near-3.9 μm channels of the FengYun-3D Hyperspectral InfraRed Atmospheric Sounder (HIRAS). Remote Sens. Lett. 2020, 11, 943–951. [Google Scholar] [CrossRef]
- Yin, M.T. Bias characterization of CrIS shortwave temperature sounding channels using fast NLTE model and GFS forecast field. J. Geophys. Res.-Atmos. 2016, 121, 1248–1263. [Google Scholar] [CrossRef] [Green Version]
- Tan, P.F.; Han, Y.G.; Xuan, Y.M. Analysis of the Non-local Thermodynamic Equilibrium Effect on Infrared Limb Radiances in the Upper Atmosphere. J. Acta Opt. Sin. 2014, 34, 9–15. [Google Scholar]
- Zou, X.; Zhuge, X.; Weng, F. Characterization of bias of advanced Himawari imager infrared observation from NWP back-ground simulations using CRTM and RTTOV. J. Atmos. Ocean Technol. 2016, 33, 2553–2567. [Google Scholar] [CrossRef]
- Saunders, R.W.; Blackmore, T.A.; Candy, B.; Francis, P.N.; Hewison, T.J. Monitoring satellite radiance biases using NWP models. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1124–1138. [Google Scholar] [CrossRef]
- Xie, X.X.; Wu, S.L.; Xu, H.X.; Yu, W.M.; He, J.K.; Gu, S.Y. Ascending-Descending Bias Correction of Microwave Radiation Imager on Board FengYun-3C. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3126–3134. [Google Scholar] [CrossRef]
- Adler-Golden, S.; Smith, D.R.; Vail, J.; Berk, A.; Nadile, R.; Jeong, L. Simulations of mesospheric and thermospheric IR radiance measured in the CIRRIS-1 A shuttle experiment. J. Atmos. Solar-Terr. Phys. 1999, 61, 1397–1410. [Google Scholar] [CrossRef]
- Lu, Q.; Hu, J.; Wu, C.; Qi, C.; Wu, S.; Xu, N.; Sun, L.; Lia, X.; Liu, H.; Guo, Y.; et al. Monitoring the performance of the Fengyun satellite instruments using radiative transfer models and NWP fields. J. Quant. Spectrosc. Radiat. Transfer. 2020, 255, 107239. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12), Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.; Hedley, J.D.; Lavender, S. Sun Glint Correction of High and Low Spatial Resolution Images of Aquatic Scenes: A Review of Methods for Visible and Near-Infrared Wavelengths. J. Remote Sens. 2009, 1, 697–730. [Google Scholar] [CrossRef] [Green Version]
FY-3E/HIRAS-II | |||
---|---|---|---|
Performance and Parameters | Wavenumber (cm−1) | Spectral Resolution (cm−1) | Number of Channels (Apodized) |
Spectral Characteristics | Long-Wave: 650~1168.125 | 0.625 | 830 |
Medium-Wave: 1168.75~1920 | 0.625 | 1203 | |
Short-Wave: 1920.625~2550 | 0.625 | 1008 | |
Detection Indicators | Scan cycle | 8 s | |
Field of view | 1.1° | ||
Maximum scanning angle | ±50.4° | ||
Radiative calibration accuracy | 0.4~1.0 K | ||
Spectral calibration accuracy | 7 ppm | ||
Pixels for Field of Regard (FOR) | 3 × 3 | ||
Orbital altitude | 836 km | ||
Instrument scanning pointing accuracy | 0.06° |
MetOp/IASI | |||
---|---|---|---|
Performance and Parameters | Wavenumber (cm−1) | Spectral Resolution (cm−1) | Number of Channels (Apodized) |
Spectral Characteristics | Long-Wave: 645~1210 | 0.25 | 2260 |
Medium-Wave: 1210~2000 | 0.25 | 3160 | |
Short-Wave: 2000~2760 | 0.25 | 3040 | |
Detection Indicators | Scan cycle | 8 s | |
Field of view | 1° | ||
Maximum scanning angle | ±48.3° | ||
Pixels for Field of Regard (FOR) | 2 × 2 | ||
Orbital altitude | 817 km | ||
Width | 1100 km |
Type of Data | |||
---|---|---|---|
Pressure Levels | Pressure | hPa | ERA5 |
Temperature | K | ||
Specific humidity | Kg/kg | ||
Ozone | Kg/kg | ||
Single Level | Surface type | FY-3E/HIRAS-II | |
Height | m | ||
Surface emissivity | RTTOV | ||
Surface temperature | K | ERA5 | |
Sea surface temperature | K | ||
2 m temperature | K | ||
2 m dewpoint temperature | K | ||
10 m U | m/s | ||
10 m V | m/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Qi, C.; Yang, T.; Gu, M.; Zhang, P.; Lee, L.; Xie, M.; Hu, X. Evaluation of FY-3E/HIRAS-II Radiometric Calibration Accuracy Based on OMB Analysis. Remote Sens. 2022, 14, 3222. https://doi.org/10.3390/rs14133222
Zhang C, Qi C, Yang T, Gu M, Zhang P, Lee L, Xie M, Hu X. Evaluation of FY-3E/HIRAS-II Radiometric Calibration Accuracy Based on OMB Analysis. Remote Sensing. 2022; 14(13):3222. https://doi.org/10.3390/rs14133222
Chicago/Turabian StyleZhang, Chunming, Chengli Qi, Tianhang Yang, Mingjian Gu, Panxiang Zhang, Lu Lee, Mengzhen Xie, and Xiuqing Hu. 2022. "Evaluation of FY-3E/HIRAS-II Radiometric Calibration Accuracy Based on OMB Analysis" Remote Sensing 14, no. 13: 3222. https://doi.org/10.3390/rs14133222
APA StyleZhang, C., Qi, C., Yang, T., Gu, M., Zhang, P., Lee, L., Xie, M., & Hu, X. (2022). Evaluation of FY-3E/HIRAS-II Radiometric Calibration Accuracy Based on OMB Analysis. Remote Sensing, 14(13), 3222. https://doi.org/10.3390/rs14133222