Mapping the Thermal State of Permafrost in Northeast China Based on the Surface Frost Number Model
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Region
2.2. Data Sources
2.3. Methods
3. Results
3.1. Air Temperature Change
3.2. Distribution and Changes of the MANDVIG
3.3. Distribution and Variation of MALSTc
3.4. Distribution and Change of SFnc
3.5. Distribution and Change of Permafrost Thermal State
- Extremely stable permafrost, SFnc ≥ 0.667;
- Stable permafrost, 0.55 ≤ SFnc < 0.667;
- Semi-stable permafrost, 0.51 < SFnc < 0.55;
- Transitional or unstable permafrost, 0.49 ≤ SFnc ≤ 0.51.
3.6. Indirect Verification
Relative Accuracy of MODIS LSTC
3.7. Relative Accuracy of Classification Standard
4. Discussion
4.1. Topographic Distribution Characteristics of the Thermal State of Permafrost
4.2. Temporal and Spatial Variation Characteristics of Thermal State of Permafrost
4.3. Influencing Factors of Changes in Thermal State of Permafrost
4.4. Uncertainty Analysis
5. Conclusions
- (1)
- From 2003 to 2019, MALSTc in 76.2% of Northeast China, and in 86.8% of the north of the south boundary of permafrost in Northeast China, showed an upward trend. From 1960 to 2019, the air temperature rise rate in permafrost areas of Northeast China was 0.47 °C/10a, which was higher than the national average level, especially in Aihui County (0.44 °C/10a), Sunwu County (0.63 °C/10a), and Huma County (0.44 °C/10a); the permafrost regional degradation in these areas was significant. Climate warming was the main factor leading to permafrost degradation. Permafrost degradation mainly occurred in relatively low altitude and sunny slope areas;
- (2)
- Taking into account Fnc under the influence of NDVI and forest canopy density as the standard, we classified the types of thermally stable permafrost in Northeast China as divided into: extremely stable permafrost, SFnc ≥ 0.66; stable permafrost, 0.55 ≤ SFnc < 0.66; semi-stable permafrost, 0.51 < SFnc < 0.55; transitional or unstable permafrost, 0.49 ≤ SFnc ≤ 0.51; and deep seasonal frozen soil (maximum frozen depth > 1.8 m), 0.40 ≤ SFnc < 0.49. The consistency between the thermal stability of permafrost and the field monitoring data reached 95%;
- (3)
- The year 2013 was a turning point in the process of permafrost thawing in Northeast China. Around this time point, the air temperature in the stable permafrost area increased by nearly 1 °C, SFnc decreased from 0.564 to 0.557, and MANDVIG decreased. The average air temperature in the semi-stable permafrost area increased by 0.36 °C, SFnc decreased from 0.529 to 0.528, and MANDVIG increased. There was no extremely stable permafrost in Northeast China. The area of stable permafrost changed from 14.9 × 104 km2 to 6.5 × 104 km2, the area of semi-stable permafrost changed from 17.68 × 104 km2 to 17.77 × 104 km2; changes were mainly reflected in the obvious northward movement of the southern boundary of the distribution range, and the increase in the number and area of island thawing areas in the region. The area of transitional or unstable permafrost changed from 8.67 × 104 km2 to 9.56 × 104 km2, the slight increase in the area was mainly reflected in the continuous thawing of the edge of the higher stable permafrost;
- (4)
- The continued increase in air temperature was the main reason for the degradation of stable permafrost.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qin, D.; Yao, T.; Ding, Y.; Ren, J. Glossary of Cryosphere Science; China Meteorological Press: Beijing, China, 2014. [Google Scholar]
- Zhang, T.; Barry, R.; Knowles, K.; Heginbottom, J.A.; Brown, J. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr. 2008, 31, 47–68. [Google Scholar] [CrossRef]
- Bockheim, J.G.; Hall, K.J. Permafrost, active-layer dynamics and periglacial environments of continental Antarctica: Periglacial and permafrost research in the Southern Hemisphere. S. Afr. J. Sci. 2002, 98, 82–90. [Google Scholar]
- Yang, J.P.; Yang, S.Q.; Li, M.; Tan, C.P. Vulnerability of frozen ground to climate change in China. J. Glaciol. Geocryol. 2013, 35, 1436–1445. [Google Scholar]
- Peng, X.; Zhang, T.; Frauenfeld, O.W.; Wang, K.; Luo, D.L.; Cao, B.; Su, H.; Jin, H.J.; Wu, Q.B. Spatio-temporal changes in active layer thickness under contemporary and projected climate in the Northern Hemisphere. J. Clim. 2018, 31, 251–266. [Google Scholar] [CrossRef]
- Witharana, C.; Bhuiyan, A.E.; Liljedahl, A.; Kanevskiy, M.; Jorgenson, T.; Jones, B.; Daanen, R.; Epstein, H.; Griffin, C.; Kent, K.; et al. An object-based approach for mapping tundra ice-wedge polygon troughs from very high spatial resolution optical satellite imagery. Remote Sens. 2021, 13, 558. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Kim, Y.; McDonald, K.C. Changing freeze-thaw seasons in northern high latitudes and associated influences on evapotranspiration. Hydrol. Processes 2011, 25, 4142–4151. [Google Scholar] [CrossRef] [Green Version]
- Liljedahl, A.K.; Boike, J.; Daanen, R.P.; Fedorov, A.N.; Frost, G.V.; Grosse, G.; Hinzman, L.D.; Iijma, Y.; Jorgen-son, J.C.; Matveyeva, N.; et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 2016, 9, 312–318. [Google Scholar] [CrossRef]
- Ma, J.; Li, R.; Liu, H. A review on the development of study on hydrothermal characteristics of active layer in permafrost areas in Qinghai-Tibet Plateau. J. Glaciol. Geocryol. 2020, 42, 195–204. [Google Scholar]
- Hu, G.; Zhao, L.; Li, R.; Wu, T.H.; Pang, Q.; Wu, X.D.; Qiao, Y.P.; Shi, J.Z. Characteristics of hydro-thermal transfer during freezing and thawing period in permafrost regions. Soils 2014, 46, 355–360. [Google Scholar]
- He, P.; Cheng, G.; Zhu, Y. The progress of study on heat and mass transfer in freezing soils. J. Glaciol. Geocryol. 2001, 23, 92–98. [Google Scholar]
- Yang, S.; Li, R.; Wu, T. The variation characteristics of different freeze-thaw status in the near surface and the relationship with temperature over the Qinghai-Tibet Plateau. J. Glaciol. Geocryol. 2019, 41, 1377–1387. [Google Scholar]
- Yang, C.; Wu, T.; Yao, J.; Li, R.; Xie, C.; Hu, G.; Zhu, X.; Hao, J.; Ni, J.; Li, X. Temporal and spatial characteristics of ground surface soil heat flux over the Qinghai-Tibetan Plateau. Plateau Meteorol. 2020, 39, 706–718. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, T.; Li, R.; Hu, G.; Qiao, Y.; Zhu, X.; Yang, S.; Yu, W.; Wang, W. Thermal condition of the active layer on the Qinghai-Tibet Plateau simulated by using the Model of GIPL2. J. Glaciol. Geocryol. 2018, 40, 1153–1166. [Google Scholar]
- Cheng, G.; Hao, J.; Wang, K.; Wu, Q.B. Thawing index and freezing index on the embankment surface in permafrost regions. J. Glaciol. Geocryol. 2003, 25, 603–607. [Google Scholar]
- Nan, Z.; Li, S.; Cheng, G. Surface frost number model and its application to the Tibetan Plateau. J. Glaciol. Geocryol. 2012, 34, 89–95. [Google Scholar]
- IPCC. Working Group I Contribution to the Sixth Assessment Report (AR6) of the IPCC: Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Solomon, S. Climate Change 2007: The Physical Science Bases: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Shan, W.; Xu, Z.; Guo, Y.; Zhang, C.; Hu, Z.; Wang, Y. Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing’an Mountains, China. Sci. Rep. 2020, 10, 21297. [Google Scholar] [CrossRef]
- Xiao, C.D.; Wang, S.J.; Qin, D.H. A preliminary study of cryosphere service function and value evaluation. Adv. Clim. Chang. Res. 2015, 6, 181–187. [Google Scholar] [CrossRef]
- Guo, Y.; Shan, W.; Zhang, C.; Hu, Z.; Wang, S.; Gao, J. Monitoring of permafrost degradation along the Bei’an-Heihe Expressway in China. Bull. Eng. Geol. Environ. 2020, 16, 1–10. [Google Scholar] [CrossRef]
- Beijing Climate Centre. Blue Book on China’s Climate Change. China’s Ecological Climate Is Generally Getting Better; Beijing Climate Centre: Beijing, China, 2020. (In Chinese) [Google Scholar]
- Zhao, Z.C.; Luo, Y.; Huang, J.B. Review of IPCC 30 years (1988–2018). Prog. Clim. Chang. Res. 2018, 14, 540–546. (In Chinese) [Google Scholar]
- Overduin, P.P.; Westermann, S.; Yoshikawa, K.; Haberlau, T.; Romanovsky, V.; Wetterich, S. Geoelectric observations of the degradation of nearshore submarine permafrost at Barrow (Alaskan Beaufort Sea). J. Geophys. Res. Earth Surf. 2012, 117, F02004. [Google Scholar] [CrossRef]
- Zhang, T. Progress in global permafrost and climate change studies. Adv. Earth Sci. 2012, 32, 27–38. [Google Scholar]
- Qingbai, W.; Yongzhi, L. Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2004, 38, 85–92. [Google Scholar] [CrossRef]
- Harris, C.; Arenson, L.U.; Christiansen, H.H.; Etzelmüller, B.; Frauenfelder, R.; Gruber, S.; Haeberli, W.; Hauck, C.; Hölzle, M.; Humlum, O.; et al. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth Sci. Rev. 2009, 92, 117–171. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Nelson, F.E.; Shiklomanov, N.I.; Guo, D.; Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth Sci. Rev. 2010, 103, 31–44. [Google Scholar] [CrossRef]
- Zhou, Y.W.; Guo, D.X.; Qiu, G.Q.; Cheng, G.D. Frozen Soil in China; Science Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Zhou, Y.W.; Guo, D.X.; Qiu, G.Q. China Permafrost; Science Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Wei, Z.; Jin, H.; Zhang, J.; Yu, S.; Han, X.; Ji, Y.; He, R.; Chang, X. Prediction of permafrost change in northeast China under climate change. Sci. China Earth Sci. 2011, 41, 74–84. (In Chinese) [Google Scholar]
- Sun, G.Y. Discussion on the symbiotic mechanisms of swamp with permafrost—Taking Da-Xiao Hinggan Mountains as examples. J. Glaciol. Geocryol. 2000, 22, 309–316. (In Chinese) [Google Scholar]
- Guo, D.X.; Wang, S.L.; Lu, G.W.; Dai, J.B.; Li, E.Y. Division of permafrost regions in Daxiao Hinggan Ling northeast China. J. Glaciol. Geocryol. 1981, 3, 1–9. (In Chinese) [Google Scholar]
- Zuo, H.C.; Lu, S.H.; Hu, Y.Q. Variations trend of yearly mean air temperature and precipitain in China in the last 50 years. Plateau Meteorol. 2004, 23, 238–244. [Google Scholar]
- Chen, L.X.; Zhou, X.J.; Li, W.L.; Luo, Y.F.; Zhu, W.Q. Characteristics of the climate change and its formation mechanism in China in last 80 years. Acta Meteorol. Sin. 2004, 62, 634–646. [Google Scholar]
- Ren, G.Y. Climate changes of China’s mainland over the past half century. Acta Meteorol. Sin. 2005, 63, 942–955. [Google Scholar]
- He, W.; Bu, R.C.; Xiong, Z.P.; Hu, Y.M. Characteristics of temperature and precipitation in Northeastern China from 1961 to 2005. Acta Ecol. Sin. 2013, 33, 519–531. [Google Scholar] [CrossRef]
- Wei, Z.; Jin, H.J.; Luo, C.X.; Zhang, J.M.; Lu, L.Z.; Yang, S.Z.; Ji, Y.J. Characteristics of atmospheric environmental changes of permafrost in northeastern China in 50 years. J. Lanzhou Univ. Nat. Sci. 2008, 44, 39–42. [Google Scholar]
- Gu, Z.W.; Zhou, Y.W. The effects of climate warming and human turbulence on the permafrost in the northward slope of MT. Da Hinggan Ling: Take a sample from Amur area. Acta Geogr. Sin. 1994, 49, 182–187. (In Chinese) [Google Scholar]
- Wang, C.J.; Shan, M.N.; Hu, Z.G.; Wei, S. Multi-spectral remote sensing based land surface temperature retrieval and isolated permafrost zone segmentation. Infrared Laser Eng. 2015, 44, 1390–1396. (In Chinese) [Google Scholar]
- Zhou, Y.W.; Wang, Y.X.; Gao, X.W.; Yue, H.S. Ground temperature, permafrost distribution and climate warming in Northeastern China. J. Glaciol. Geocryol. 1996, 18, 139–147. (In Chinese) [Google Scholar]
- Chang, X.L.; Jin, H.J.; He, R.X.; Jing, H.Y.; Li, G.Y.; Wang, Y.P.; Luo, D.L.; Yu, S.P.; Sun, H.P. Review of permafrost monitoring in the northern Da Hinggan Mountains, Northeast China. J. Glaciol. Geocryol. 2013, 35, 93–100. (In Chinese) [Google Scholar]
- Wang, C.H.; Zhang, B.L.; Liu, F.T. A preliminary analysis on the regularity of permafrost degradation, its advantages and disadvantages in the Great and Lesser Xing’an Mountains. J. Glaciol. Geocryol. 1996, 18, 174–180. (In Chinese) [Google Scholar]
- Jin, H.J.; Li, S.X.; Wang, S.L.; Zhao, L. Impacts of climatic change on permafrost and cold regions environments in China. Acta Geogr. Sin. 2000, 55, 161–173. (In Chinese) [Google Scholar]
- Chen, S.S.; Zang, S.Y.; Sun, L. Characteristics of permafrost degradation in Northeast China and its ecological effects: A review. Sci. Cold Arid Reg. 2020, 12, 1–11. [Google Scholar]
- Jin, H.; Yu, Q.; Lü, L.; Guo, D.; He, R.; Yu, S.; Sun, G.; Li, Y. Degradation of permafrost in the Xing’anling Mountains, northeastern China. Permafr. Periglac. Processes 2007, 18, 245–258. [Google Scholar] [CrossRef]
- Brown, J.; Ferrians, O.J., Jr.; Heginbottom, J.A.; Melnikov, E.S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions; US Geological Survey: Reston, VA, USA, 1997.
- Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Xia, C.; Bao, C.; Yin, G. Using MODIS land surface temperatures for permafrost thermal modeling in Beiluhe Basin on the Qinghai-Tibet Plateau. Sensors 2019, 19, 4200. [Google Scholar] [CrossRef] [Green Version]
- Xia, K.; Luo, Y.; Li, W. Simulation of freezing and melting of soil on the northeast Tibetan Plateau. Chin. Sci. Bull. 2011, 56, 2145–2155. [Google Scholar] [CrossRef] [Green Version]
- Marchand, N.; Royer, A.; Krinner, G.; Roy, A.; Langlois, A.; Vargel, C. Snow-covered soil temperature retrieval in Canadian Arctic permafrost areas, using a land surface scheme informed with satellite remote sensing data. Remote Sens. 2018, 10, 1703. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Nan, Z.; Zhao, L. The applicability of the MODIS land surface temperature products to simulating the permafrost distribution over the Tibetan Plateau. J. Glaciol. Geocryol. 2011, 33, 132–143. [Google Scholar]
- Wang, T.; Wu, T.; Wang, P.; Li, R.; Xie, C.; Zou, D. Spatial distribution and changes of permafrost on the Qinghai-Tibet Plateau revealed by statistical models during the period of 1980 to 2010. Sci. Total Environ. 2019, 650, 661–670. [Google Scholar] [CrossRef]
- Obu, J.; Westermann, S.; Bartsch, A. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Nelson, F.E. Permafrost distribution in Central Canada: Applications of a climate-based predictive mode. Ann. Assoc. Am. Geogr. 1986, 76, 550–569. [Google Scholar] [CrossRef]
- Nelson, F.E.; Anisimov, O.A. Permafrost zonation in Russia under anthropogenic climatic change. Permafr. Periglac. Processes 1993, 4, 137–148. [Google Scholar] [CrossRef]
- Anisimov, O.A.; Nelson, F.E. Permafrost distribution in the Northern Hemisphere under scenarios of climatic change. Glob. Planet. Chang. 1996, 14, 59–72. [Google Scholar] [CrossRef]
- Nelson, F.E.; Outcalt, S.I. A computational method for prediction and regionalization of permafrost. Arct. Alp. Res. 1987, 19, 279–288. [Google Scholar] [CrossRef]
- Nelson, F.E.; Outcalt, S.I. A frost index number for spatial prediction of ground frost zones. In Proceedings of the 4th International Conference on Permafrost, Fairbanks, AL, USA, 17–22 July 1983; National Academy Press: Washington, DC, USA, 1983; Volume 1, pp. 907–911. [Google Scholar]
- Wang, Z. Applications of Permafrost Distribution Models on the Qinghai-Tibetan Plateau; Lanzhou University: Lanzhou, China, 2010. [Google Scholar]
- Nan, Z.T.; Li, S.X.; Liu, Y.Z. Mapping and application of frozen soil distribution in Qinghai Tibet Plateau Based on annual average ground temperature. Glacier Frozen Soil 2002, 24, 142–148. (In Chinese) [Google Scholar]
- Ran, Y.; Li, X.; Cheng, G.; Nan, Z.T.; Che, J.X.; Sheng, Y.; Wu, Q.B.; Jin, H.J.; Luo, D.L.; Tang, Z.G.; et al. Mapping the permafrost stability on the Tibetan Plateau for 2005–2015. Sci. China Earth Sci. 2020, 63, 62–79. [Google Scholar] [CrossRef]
- Ran, Y.H.; Li, X.; Jin, R.; Guo, J.W. Remote sensing of the mean annual surface temperature and surface frost number for mapping permafrost in China. Arct. Antarct. Alp. Res. 2015, 47, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.J.; Li, X.Z.; Hu, Y.M.; Wang, X.W.; Sun, J. Application of freezing number model in permafrost zoning in Northeast China. J. Appl. Ecol. 2008, 177–182. (In Chinese) [Google Scholar]
- Zhang, Z.; Wu, Q.; Xun, X.; Wang, B.; Wang, X. Climate change and the distribution of frozen soil in 1980–2010 in northern northeast China. Quat. Int. 2018, 467, 230–241. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Q.; Xun, X.; Li, Y.C. Spatial distribution and changes of Xing’an permafrost in China over the past three decades. Quat. Int. 2019, 523, 16–24. [Google Scholar]
- Zhang, Z.Q.; Wu, Q.B.; Hou, M.T.; Tai, B.W.; An, Y.K. Permafrost change in Northeast China in the 1950s–2010s. Adv. Clim. Chang. Res. 2021, 12, 18–28. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X. Progress, challenges and opportunities of permafrost mapping in China. Adv. Earth Sci. 2019, 34, 1015–1027. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Poutou, E.; Krinner, G.; Genthon, C. Role of soil freezing in future boreal climate change. Clim. Dyn. 2004, 23, 621–639. [Google Scholar] [CrossRef]
- Guo, J.T.; Hu, Y.M.; Xiong, Z.P.; Yan, X.L.; Ren, B.H.; Bu, R.C. Spatial and temporal changes of NDVI during vegetation growth season in permafrost region of Northeast China and its response to climate change. Chin. J. Appl. Ecol. 2017, 28, 2413–2422. (In Chinese) [Google Scholar]
- Chang, X.; Jin, H.; Wang, Y.; Zhang, Y.; Zhou, G.; Chen, F.; Zhao, Y. Influences of vegetation on permafrost: A review. Acta Ecol. Sin. 2012, 32, 7981–7990. [Google Scholar] [CrossRef] [Green Version]
- He, Y. Climate Classification Index (Koppen Geiger) in Pan-TPE (1986–2010); National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar]
- Cheng, G.D. Discussion on the regularity of permafrost zonality at high altitude in China. J. Geogr. 1984, 39, 185–193. (In Chinese) [Google Scholar]
- Zhou, Y.W.; Guo, D.X.; Qiu, G.Q. Geocryology in China; Science Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Zhu, G.R.; Li, Y. Types and changes of Chinese climate zones from 1961 to 2013 based on Köppen climate classification. Arid Land Geogr. 2015, 38, 1121–1132. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updatedt. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Wang, C.; Shan, W.; Guo, Y.; Hu, Z.; Jiang, H. Permafrost distribution study based on Landsat ETM+ imagery of the northwest section of the Lesser Khingan Range, China. In Landslide Science for a Safer Geoenvironment; Springer International Publishing: Berlin, Germany, 2014; Volume 3, pp. 529–534. [Google Scholar]
- Shan, W.; Jiang, H.; Hu, Z.; Guo, Y.; Wang, C. Island permafrost degrading process and deformation characteristics of expressway widen subgrade foundation. Disaster Adv. 2012, 5, 827–832. [Google Scholar]
- Yang, Y.P.; Cheng, D.X.; Fu, H.X. Engineering geological characteristics and evaluation of permafrost area in Daxinganling, Northeast China. J. Eng. Geol. 2008, 16, 657–662. (In Chinese) [Google Scholar]
- Wang, C.; Shan, W.; Guo, Y.; Hu, Z.; Jiang, H. Relative factors of Beihei Highway’s ground deformation interpretation based on remote-sensing imagery technology. In Landslides in Cold Regions in the Context of Climate Change; Springer International Publishing: Berlin, Germany, 2014; pp. 191–204. [Google Scholar]
- Hachem, S.; Duguay, C.R.; Allard, M. Comparison of MODIS-derived land surface temperatures with near-surface soil and air temperature measurements in continuous permafrost terrain. Cryosphere Discuss. 2011, 5, 1583–1625. [Google Scholar]
- Nie, J.L.; Wu, J.J.; Yang, X.; Liu, M.; ZhaIlg, J.; Zhou, L. Downsealing land surface temperature based on relationship between surface temperature and vegetation index. Acta Ecol. Sin. 2011, 31, 4961–4969. [Google Scholar]
- Li, F.; Zeng, Y.; Li, X.; Zhao, Q.; Wu, B. Remote sensing based monitoring of terrestrial variations in vegetation activity in China from 1982 to 2009. Sci. China Earth Sci. 2014, 44, 1671–1678. [Google Scholar]
- Li, J.-Y.; Zhang, D.-Y.; Wang, J.-X. Temporal and spatial variation of vegetation NDVI and its response to ground temperature in permafrost regions of Heilongjiang Province. J. Anhui Agric. Sci. 2020, 48, 6. [Google Scholar]
- Gao, M.; Qin, Z.; Xu, B. Estimation of the basic parameters for deriving surface temperature from MODIS data. Arid Zone Res. 2008, 24, 113–119. [Google Scholar]
- Liu, F.; Lv, Y.P.; Jiang, L.M.; Xin, H.; Zhang, T.B.; Lu, X. Correlation analysis of MODIS brightness temperature with air temperature and ground temperature. Seismogeology 2010, 32, 127–137. (In Chinese) [Google Scholar]
- Ke, L.H.; Wang, Z.X.; Song, C.Q.; Lu, Z.Q. MODIS LST time series reconstruction and comparison with station ground temperature in the northeast of Qinghai Tibet Plateau. Prog. Geogr. Sci. 2011, 30, 819–826. (In Chinese) [Google Scholar]
- National Earth System Science Data Center. National Science & Technology Infrastructure of China. Available online: http://www.geodata.cn (accessed on 1 April 2021).
- Li, M.Z.; Guo, H.J.; Fan, W.Y.; Zhen, W. Remote sensing analysis of forest site quality in Daxinganling based on GWR. Sci. Silvae Sin. 2017, 53, 6–66. (In Chinese) [Google Scholar]
- Wei, H.Y.; Dong, L.B.; Liu, Z.G. Optimization simulation of stand spatial structure of main forest types in Daxing’anling. J. Appl. Ecol. 2019, 30, 3824–3832. (In Chinese) [Google Scholar]
- Hu, Q.; Ma, X.Q.; Hu, L.T.; Wang, Y.J.; Xu, L.; Pan, X.B. Application of Matlab in meteorological teaching—M-K test for the abrupt change analysis of meteorological elements. Res. Explor. Lab. 2019, 38, 5. [Google Scholar]
- Shan, W.; Zhang, C.; Guo, Y.; Shan, M.; Zeng, X.; Wang, C. Climate Change and surface deformation characteristics in degradation area of permafrost in Lesser Khingan Mountain, China. In Understanding and Reducing Landslide Disaster Risk; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Xiao, Y.; Zhao, L.; Zou, D.F.; Liu, S.; Ma, L.; Ying, X.; Liu, Y. Analysis of influencing factors of Permafrost Distribution in Qinghai Tibet Plateau Based on geographic detector. Glacier Frozen Soil 2021, 43, 11. (In Chinese) [Google Scholar]
- Mao, D.H.; Wang, Z.M.; Song, K.S.; Liu, D.W.; Zhang, B.; Zhang, S.; Luo, L.; Zhang, C.H. NDVI change of vegetation in permafrost region of Northeast China and its response to climate change and land cover change. China Environ. Sci. 2011, 31, 283–292. (In Chinese) [Google Scholar]
- Wu, J.; Sheng, Z.; Du, J.; Zhang, Y.; Zhang, J. Spatiototemporal change patterns of temperature and precipitation in Northeast China from 1956 to 2017. Res. Soil Water Conserv. 2021, 28, 340–348. (In Chinese) [Google Scholar]
- Douglas, T.A.; Turetsky, M.R.; Koven, C.D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems. NPJ Clim. Atmos. Sci. 2020, 3, 1–7. [Google Scholar]
Study Area | Borehole No. | Lat., Long. (°E, °N) | Elevation (m at Sea Level) | Monitoring Depth (m) | Start Monitoring Time (Month, Year) | Monitoring Frequency |
---|---|---|---|---|---|---|
Gehe–Mangui Road | GM1 | 121.866, 51.634 | 774.1 | 15 | September, 2018 | Daily |
GM2 | 121.296, 51.183 | 869 | 15 | |||
Walagan–Xilinji Highway | WX1 | 123.556, 52.740 | 569 | 5 | October, 2017 | |
WX2 | 123.652, 52.690 | 496 | 22 | November, 2017 | ||
WX3 | 123.691, 52.691 | 481 | 5.5 | October, 2017 | ||
WX4 | 123.819, 52.680 | 539 | 21.5 | December, 2017 | ||
WX5 | 123.960, 52.680 | 455 | 5 | October, 2017 | ||
WX6 | 124.065, 52.665 | 503 | 19 | April, 2018 | ||
WX7 | 124.263, 52.635 | 647 | 4.5 | December, 2017 | ||
WX8 | 124.327, 52.661 | 565 | 19 | April, 2018 | ||
Gehe–Labudalin Highway | GL1 | 121.178, 50.632 | 802.5 | 15 | September, 2018 | |
GL2 | 121.190, 50.635 | 675 | 15.5 | August, 2019 | ||
GL3 | 120.685, 50.357 | 619 | 15 | November, 2018 | ||
Shiwei–Labudalin Highway | SL1 | 120.001, 50.878 | 690 | 15 | November, 2018 | |
SL2 | 119.927, 50.831 | 676 | 15 | August, 2019 | ||
SL3 | 119.931, 50.831 | 690 | 12 | November, 2018 | ||
SL4 | 119.927, 50.831 | 673 | 15 | August, 2019 | ||
Beian–Heihe Expressway | BH1 | 127.306, 49.514 | 278 | 12 | September, 2009 | |
BH1 | 127.306, 49.514 | 277 | 12 | |||
BH3 | 127.351, 49.658 | 229 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, W.; Zhang, C.; Guo, Y.; Qiu, L. Mapping the Thermal State of Permafrost in Northeast China Based on the Surface Frost Number Model. Remote Sens. 2022, 14, 3185. https://doi.org/10.3390/rs14133185
Shan W, Zhang C, Guo Y, Qiu L. Mapping the Thermal State of Permafrost in Northeast China Based on the Surface Frost Number Model. Remote Sensing. 2022; 14(13):3185. https://doi.org/10.3390/rs14133185
Chicago/Turabian StyleShan, Wei, Chengcheng Zhang, Ying Guo, and Lisha Qiu. 2022. "Mapping the Thermal State of Permafrost in Northeast China Based on the Surface Frost Number Model" Remote Sensing 14, no. 13: 3185. https://doi.org/10.3390/rs14133185
APA StyleShan, W., Zhang, C., Guo, Y., & Qiu, L. (2022). Mapping the Thermal State of Permafrost in Northeast China Based on the Surface Frost Number Model. Remote Sensing, 14(13), 3185. https://doi.org/10.3390/rs14133185