A Compensation Method of Saturated Waveform for Space-Borne Laser Altimeter
Abstract
:1. Introduction
2. The GF-7 Laser Altimeter System
3. Methods
- Filtering waveform data. Two sets of data were selected from the GF-7 full-waveform data. One set of data showed no saturation in both high- and low-gain channels; in the other set of data, there was saturation in the high-gain channel and no saturation in the low-gain channel.
- Waveform pre-processing. The laser altimetry full-waveform data were waveform decomposed to obtain single-peak echo data; then, the valid waveform was filtered out using the threshold denoising method.
- Extraction of laser waveform characteristic parameters. The Gaussian fitting of valid waveform data involved using the least square method iteration to extract the peak time and peak intensity parameters.
- Construction of the laser waveform saturation compensation model. Based on the consistency of laser ranging time and waveform features between the high- and low-gain channels of the space-borne laser altimeter, the laser waveform compensation model was constructed, namely, laser pulse flight delay compensation and laser waveform peak intensity compensation.
- Recovery of saturated waveform characteristic parameters. The SCM was used to compensate for the features of the saturated waveform and then recover the energy characteristics and geometric measurement accuracy of the laser saturated waveform.
3.1. Signal Saturation Identification
3.2. Extraction of Laser Waveform Characteristic Parameters
3.3. Saturated Compensation Model
4. Experiments and Analysis
4.1. Experimental Data
4.2. Experiment 1: Laser Pulse Flight Delay Compensation
4.3. Experiment 2: Recovery of Characteristic Parameters of Saturated Waveform
5. Discussion
6. Conclusions
- Based on the dual-channel ranging consistency, it was found that the laser saturation waveform had a nonlinear delay in calculating the pulse flight time.
- The pulse delay compensation model could be used to correct the range distance of the GF-7 space-borne laser altimeter saturated data and improve the ranging accuracy of saturated data. The ranging accuracy after correction by the SCM could be improved from 0.7 ns (0.11 m) to 0.14 ns (0.02 m).
- The compensation method proposed in this paper could effectively restore the features of saturated waveform signals, which is of great significance in the study of global elevation control point acquisition, forest parameter inversion, biomass estimation, and polar ice cover monitoring.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schutz, B.E.; Zwally, H.J.; Shuman, C.A.; Hancock, D.; DiMarzio, J.P. Overview of the ICESat mission. Geophys. Res. Lett. 2005, 32, L21S01. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn. 2002, 34, 405–445. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Yi, D.; Kwok, R.; Zhao, Y. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J. Geophys. Res. Oceans 2008, 113, C02S15. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Wang, L.; Li, X.; Yin, D.; Gong, H.; Nie, S.; Shi, C.; Zhong, R.; Liu, X.; Xu, R. Canopy height layering biomass estimation model (CHL-BEM) with full-waveform LiDAR. Remote Sens. 2019, 11, 1446. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Huang, H.; Gong, P.; Liu, C.; Li, C.; Li, W. Forest canopy height extraction in rugged areas with ICESAT/GLAS data. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4650–4657. [Google Scholar] [CrossRef]
- Atwood, D.K.; Guritz, R.M.; Muskett, R.R.; Lingle, C.S.; Sauber, J.M.; Freymueller, J.T. DEM control in arctic Alaska with ICESat laser altimetry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3710–3720. [Google Scholar] [CrossRef]
- Araki, H.; Tazawa, S.; Noda, H.; Ishihara, Y.; Goossens, S.; Sasaki, S.; Kawano, N.; Kamiya, I.; Otake, H.; Oberst, J.; et al. Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry. Science 2009, 323, 897–900. [Google Scholar] [CrossRef]
- Kamalakar, J.A.; Prasad, A.S.L.; Bhaskar, K.V.S.; Selvaraj, P.; Venkateswaran, R.; Kalyani, K.; Goswami, A.; Raja, V. Lunar Laser Ranging Instrument (LLRI): A tool for the study of topography and gravitational field of the Moon. Curr. Sci. 2009, 96, 512–516. [Google Scholar]
- Tong, X.H.; Li, L.Y.; Liu, S.J.; Xu, Y.S.; Ye, Z.; Jin, Y.M.; Wang, F.X.; Xie, H. Detection and estimation of ZY-3 three-line array caused by attitude oscillation. ISPRS-J. Photogramm. Remote Sens. 2015, 101, 291–309. [Google Scholar] [CrossRef]
- Guoyuan, L.; Xinming, T. Analysis and validation of ZY-3 02 satellite laser altimetry data. Acta Geod. Cartogr. Sin. 2017, 46, 1939. [Google Scholar]
- Li, G.; Tang, X.; Gao, X.; Wang, X.; Fan, W.; Chen, J.; Mo, F. Integration of ZY3-02 satellite laser altimetry data and stereo images for high-accuracy mapping. Photogramm. Eng. Remote Sens. 2018, 84, 569–578. [Google Scholar] [CrossRef]
- Xie, J.; Huang, G.; Liu, R.; Zhao, C.; Dai, J.; Jin, T.; Mo, F.; Zhen, Y.; Xi, S.; Tang, H. Design and data processing of China’s first spaceborne laser altimeter system for earth observation: GaoFen-7. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1034–1044. [Google Scholar] [CrossRef]
- Li, G.; Guo, J.; Tang, X.; Ye, F.; Zuo, Z.; Liu, Z.; Chen, J.; Xue, Y. Preliminary quality analysis of GF-7 satellite laser altimeter full waveform data. Int. Arch. Photogramm. Remote Sens. 2020, 43, 129–134. [Google Scholar] [CrossRef]
- Tang, X.; Xie, J.; Liu, R.; Huang, G.; Zhao, C.; Zhen, Y.; Tang, H.; Dou, X. Overview of the GF-7 laser altimeter system mission. Earth Space Sci. 2020, 7, e2019EA000777. [Google Scholar] [CrossRef]
- Tang, X.; Gao, X.; Cao, H.; Mo, F.; Wang, Z.; Xu, W.; Zhu, G.; Yue, Q.; Hu, F.; Zhu, H. The China ZY3-03 Mission: Surveying and mapping technology for high-resolution remote sensing satellites. IEEE Geosci. Remote Sens. Mag. 2020, 8, 8–17. [Google Scholar] [CrossRef]
- Xie, J.; Liu, R.; Mei, Y.; Liu, W.; Pan, J. Preliminary Pointing Bias Calibration of ZY3-03 Laser Altimeter. J. Geodes. Geo. Sci. 2021, 4, 91. [Google Scholar]
- Wang, X.; Cheng, X.; Gong, P.; Huang, H.; Li, Z.; Li, X. Earth science applications of ICESat/GLAS: A review. Int. J. Remote Sens. 2011, 32, 8837–8864. [Google Scholar] [CrossRef]
- Chen, Q. Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry. Remote Sens. Environ. 2010, 114, 1610–1627. [Google Scholar] [CrossRef]
- Fricker, H.; Borsa, A.; Minster, B.; Carabajal, C.; Quinn, K.; Bills, B. Assessment of ICESat performance at the salar de Uyuni, Bolivia. Geophys. Res. Lett. 2005, 32, L21S06. [Google Scholar] [CrossRef] [Green Version]
- Abshire, J.B.; Sun, X.; Riris, H.; Sirota, J.M.; McGarry, J.F.; Palm, S.; Yi, D.; Liiva, P. Geoscience laser altimeter system (GLAS) on the ICESat mission: On-orbit measurement performance. Geophys. Res. Lett. 2005, 32, L21S02. [Google Scholar] [CrossRef] [Green Version]
- Letu, H.; Hara, M.; Tana, G.; Nishio, F. A saturated light correction method for DMSP/OLS nighttime satellite imagery. IEEE Trans. Geosci. Remote Sens. 2011, 50, 389–396. [Google Scholar] [CrossRef]
- Mei, Z.; Zhi-min, Z.; Yun-kai, D. Research on the Saturated Raw Data Correction Method for SAR Application. J. Electron. Inf. Technol. 2007, 29, 2114–2116. [Google Scholar]
- Sun, X.; Abshire, J.; Yi, D. Geoscience Laser Altimeter System-Characteristics and Performance of the Altimeter Receiver. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 8–12 December 2003; p. C32A-0432. [Google Scholar]
- Sun, X.; Abshire, J.; Yi, D.; Fricker, H. ICESat receiver signal dynamic range assessment and correction of range bias due to saturation. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 12–16 December 2005; p. C34A-07. [Google Scholar]
- Sun, X.; Abshire, J.B.; Borsa, A.A.; Fricker, H.A.; Yi, D.; DiMarzio, J.P.; Paolo, F.S.; Brunt, K.M.; Harding, D.J.; Neumann, G.A. ICESAT/GLAS altimetry measurements: Received signal dynamic range and saturation correction. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5440–5454. [Google Scholar] [CrossRef] [PubMed]
- ICESat/GLAS Data: Description of Past Data Releases. Available online: http://nsidc.org/data/icesat/past_releases.html (accessed on 27 June 2022).
- Xie, H.; Li, B.; Tong, X.; Zhang, X.; He, T.; Dai, J.; Huang, G.; Zhang, Z.; Liu, S. A Planimetric Location Method for Laser Footprints of the Chinese Gaofen-7 Satellite Using Laser Spot Center Detection and Image Matching to Stereo Image Product. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9758–9771. [Google Scholar] [CrossRef]
- Aiyan, G.; Dai Jun, Z.C. Design and on-orbit validation of GF-7 satellite laser altimeter. Spacecr. Eng. 2020, 39, 43–48. [Google Scholar]
- Borsa, A.A.; Fricker, H.A.; Brunt, K.M. A terrestrial validation of ICESat elevation measurements and implications for global reanalyses. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6946–6959. [Google Scholar] [CrossRef]
- Zhiqiang, Z.; Xinming, T.; Guoyuan, L.; Song, L. Adaptive Gaussian filtering of the full waveform of GF-7 satellite laser altimeter. Infrared Laser Eng. 2020, 49, 20200251. [Google Scholar] [CrossRef]
- Wagner, W.; Ullrich, A.; Ducic, V.; Melzer, T.; Studnicka, N. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS-J. Photogramm. Remote Sens. 2006, 60, 100–112. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, H.; Tong, X.; Zhang, H.; Tang, H.; Li, B.; Wu, D.; Hao, X.; Liu, S.; Xu, X. A Combined Deconvolution and Gaussian Decomposition Approach for Overlapped Peak Position Extraction From Large-Footprint Satellite Laser Altimeter Waveforms. IEEE J. Sel. Top. App. Earth Obs. Remote Sens. 2020, 13, 2286–2303. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, W.; Sun, G.; Chi, H.; Zhang, Z.; Guo, Z. Slope-adaptive waveform metrics of large footprint lidar for estimation of forest aboveground biomass. Remote Sens. Environ. 2019, 224, 386–400. [Google Scholar] [CrossRef]
- Ke, H.; Song, L.; Yue, M.; Xin, T.; Hui, Z.; Zhi-Yu, Z. Theoretical model and correction method of range walk error for single-photon laser ranging. Acta Phys. Sin. 2018, 67, 221401. [Google Scholar]
Parameter | Value |
---|---|
Number of beams | 2 |
Wavelength/nm | 1064 |
Frequency/Hz | 3/6 |
Emission pulse energy/mJ | 100~180 |
Emission pulse width/ns | 4~8 |
Laser divergence angle/µrad | 30~35 (80% energy) |
The aperture of receiving telescope/mm | 600 |
Digital sampling interval of waveform/ns | 0.5 |
Laser emission efficiency | 0.994 |
Beam spot size/m | 15–20 |
Laser receiving efficiency | 0.790 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Fan, X.; Pan, H.; Yu, Q. A Compensation Method of Saturated Waveform for Space-Borne Laser Altimeter. Remote Sens. 2022, 14, 3158. https://doi.org/10.3390/rs14133158
Li S, Fan X, Pan H, Yu Q. A Compensation Method of Saturated Waveform for Space-Borne Laser Altimeter. Remote Sensing. 2022; 14(13):3158. https://doi.org/10.3390/rs14133158
Chicago/Turabian StyleLi, Shaoning, Xiufang Fan, Hongbo Pan, and Qifan Yu. 2022. "A Compensation Method of Saturated Waveform for Space-Borne Laser Altimeter" Remote Sensing 14, no. 13: 3158. https://doi.org/10.3390/rs14133158
APA StyleLi, S., Fan, X., Pan, H., & Yu, Q. (2022). A Compensation Method of Saturated Waveform for Space-Borne Laser Altimeter. Remote Sensing, 14(13), 3158. https://doi.org/10.3390/rs14133158