Initial Tropospheric Wind Observations by Sanya Incoherent Scatter Radar
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Radial Velocity
3.2. Horizontal Wind Velocity
3.3. Observation Results
4. Conclusions
- (1)
- In July, SYISR could obtain an effective echo of atmospheric turbulence up to 20 km. The measured SNR was determined by the intensity of the turbulence and controlled by the radar gain and beam width depending on the azimuth and elevation.
- (2)
- Generally, both the GEO and VAD methods gave similar wind profiles. With increasing height, the discrepancy between the two methods gradually became nonnegligible. This indicates that the anisotropy of turbulence becomes significant at higher altitudes; therefore, the linear variation rather than the constant wind assumption works better. For the same methods, the discrepancy at higher altitudes among wind velocities derived from different zenith angle measurements was nonnegligible.
- (3)
- By comparing the SYISR data with the reanalysis data of ERA5, the horizontal wind obtained by SYISR was in good agreement with the reanalysis data of ERA5, proving that SYISR can be used for tropospheric wind detection.
- (4)
- During rainfall, we can distinguish the spectrum of rainfall and atmospheric turbulence from the power spectrum according to the spectral widths and Doppler frequency shifts.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science, 2nd ed.; University of Washington: Washington, DC, USA, 2006; ISBN 0-12-732951-X. [Google Scholar]
- Ramaswamy, V.; Schwarzkopf, M.D.; Shine, K.P. Radiative forcing of climate from halocarbon-induced global stratospheric ozone loss. Nature 1992, 355, 810–812. [Google Scholar] [CrossRef] [Green Version]
- Colwell, R.C.; Friend, A.W. The D Region of the Ionosphere. Nature 1936, 137, 782. [Google Scholar] [CrossRef]
- Watt, R.A.; Bainbridge-Bell, L.H.; Wilkins, A.F.; Bowen, E.G. Return of radio waves from the middle atmosphere. Nature 1936, 137, 866. [Google Scholar] [CrossRef]
- Gage, K.S.; Balsley, B.B. On the scattering and reflection mechanisms contributing to clear air radar echoes from the troposphere, stratosphere, and mesosphere. Radio Sci. 1980, 15, 243–257. [Google Scholar] [CrossRef]
- Flock, W.L.; Balsley, B.B. VHF radar returns from the D region of the equatorial ionosphere. J. Geophys. Res. 1967, 72, 5537. [Google Scholar] [CrossRef]
- May, P.T.; Strauch, R.G.; Moran, K.P.; Ecklund, W.L. Temperature sounding by RASS with wind profiler radars: A preliminary study. IEEE Trans. Geosci. Remote Sens. 1990, 28, 19–28. [Google Scholar] [CrossRef]
- Zhou, C.; Qing, H.; Chen, G.; Gu, X.; Ni, B.; Yang, G.; Zhang, Y.; Zhao, Z. Wuhan Atmospheric Radio Exploration (WARE) radar: Implementation and initial results. Atmos. Meas. Tech. 2014, 7, 11901–11925. [Google Scholar] [CrossRef]
- Harper, R.M.; Woodman, R.F. Preliminary multiheight radar observations of waves and winds in the mesosphere over Jicamarca. J. Atmos. Terr. Phys. 1977, 39, 959–963. [Google Scholar] [CrossRef]
- Rastogi, P.K.; Bowhill, S.A. Scattering of radio waves from the mesosphere-2. evidence for intermittent mesospheric turbulence. J. Atmos. Terr. Phys. 1976, 38, 449–462. [Google Scholar] [CrossRef]
- Rastogi, P.K.; Woodman, R.F. Mesospheric studies using the Jicamarca incoherent-scatter radar. J. Atmos. Terr. Phys. 1974, 36, 1217–1231. [Google Scholar] [CrossRef]
- Woodman, R.F.; Guillen, A. Radar Observations of Winds and Turbulence in the Stratosphere and Mesosphere. J. Atmos. Sci. 1974, 31, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Fukao, S.; Kato, S.; Yokoi, S.; Harper, R.M.; Woodman, R.F.; Gordon, W.E. One full-day radar measurement of lower stratospheric winds over Jicamarca. J. Atmos. Terr. Phys. 1978, 40, 1331–1337. [Google Scholar] [CrossRef]
- Fukao, S.; Kato, S.; Aso, T.; Sasada, M.; Makihira, T. Middle and upper atmosphere radar (MUR) under design in Japan. Radio Sci. 1980, 15, 225–231. [Google Scholar] [CrossRef]
- Kato, S.; Ogawa, T.; Tsuda, T.; Sato, T.; Kimura, I.; Fukao, S. The middle and upper atmosphere radar: First results using a partial system. Radio Sci. 1984, 19, 1475–1484. [Google Scholar] [CrossRef]
- Riggin, D.M.; Liu, H.L.; Lieberman, R.S.; Roble, R.G.; Russell, J.M., III; Mertens, C.J.; Mlynczak, M.G.; Pancheva, D.; Franke, S.J.; Murayama, Y.; et al. Observations of the 5-day wave in the mesosphere and lower thermosphere. J. Atmos. Terr. Phys. 2006, 68, 323–339. [Google Scholar] [CrossRef]
- Larsen, M.F.; Rutger, J.; Holden, D.N. Direct Measurements of Vertical-Velocity Power Spectra with the Sousy-VHF-Radar Wind Profiler System. J. Atmos. Sci. 1987, 44, 3442–3448. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Cui, X.; Chen, F.; Zhao, Z.; Wang, Y.; Yao, Q.; Wang, C.; Lü, D.; Zhang, S.; Zhang, X.; et al. MST radars of Chinese meridian project: System description and atmospheric wind measurement. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4513–4523. [Google Scholar] [CrossRef]
- Qing, H.; Zhou, C.; Zhao, Z.; Chen, G.; Ni, B.; Gu, X.; Yang, G.; Zhang, Y. A statistical study of inertia gravity waves in the troposphere based on the measurements of Wuhan Atmosphere Radio Exploration (WARE) radar. J. Geophys. Res. Atmos. 2014, 119, 3701–3714. [Google Scholar] [CrossRef]
- Qing, H.; Zhou, C.; Zhao, Z.; Ni, B.; Zhang, Y. Inertia gravity wave activity in the troposphere and lower stratosphere observed by Wuhan MST radar. Sci. China Earth Sci. 2016, 59, 1066–1073. [Google Scholar] [CrossRef]
- Tian, Y.F.; Lü, D.R. Comparison of Beijing MST radar and radiosonde horizontal wind measurements. Adv. Atmos. Sci. 2017, 34, 39–53. [Google Scholar] [CrossRef]
- Fukao, S.; Sato, T.; Yamasaki, N.; Kato, S. Winds measured by a UHF Doppler radar and rawinsondes: Comparisons made on twenty-six days (August-september 1977) at Arecibo, Puerto Rico. J. Appl. Meteor. 1982, 21, 1357–1363. [Google Scholar] [CrossRef]
- Ierkic, H.M.; Woodman, R.F.; Perillat, P. Ultrahigh vertical resolution radar measurements in the lower stratosphere at Arecibo. Radio Sci. 1990, 25, 941–952. [Google Scholar] [CrossRef]
- Röttger, J.; Czechowsky, P.; Schmidt, G. First low-power VHF radar observation of tropospheric, stratospheric and mesospheric winds and turbulence at the Arecibo Observatory. J. Atmos. Terr. Phys. 1981, 43, 789–800. [Google Scholar] [CrossRef]
- Sato, T.; Woodman, R.F. Fine Altitude resolution observations of stratospheric turbulent layers by the Arecibo 430 MHZ radar. J. Atmos. Sci. 1982, 39, 2546–2552. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Woodman, R.F. Fine Altitude Resolution Radar Observations of Upper-Tropospheric and Lower-Stratospheric Winds and Waves. J. Atmos. Sci. 1982, 39, 2539–2545. [Google Scholar] [CrossRef] [Green Version]
- Woodman, R.F. High-altitude resolution stratospheric measurements with the Arecibo 430Mhz radar. Radio Sci. 1980, 15, 417–422. [Google Scholar] [CrossRef]
- Yue, X.; Wan, W.; Ning, B.; Jin, L. An active phased array radar in China. Nat. Astron. 2022, 6, 619. [Google Scholar] [CrossRef]
- Yue, X.; Wan, W.; Xiao, H.; Zeng, L.; Ke, C.; Ning, B.; Ding, F.; Zhao, B.; Jin, L.; Li, C.; et al. Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar. Earth Planet. Phys. 2020, 4, 579–587. [Google Scholar] [CrossRef]
- Hildebrand, P.H.; Sekhon, R.S. Objective Determination of the Noise Level in Doppler Spectra. J. Appl. Meteor. 1974, 13, 808–811. [Google Scholar] [CrossRef] [Green Version]
- May, P.T.; Strauch, R.G. An Examination of Wind Profiler Signal Processing Algorithms. J. Atmos. Ocean. Technol. 1989, 6, 731–735. [Google Scholar] [CrossRef] [Green Version]
- Strauch, R.G.; Merritt, D.A.; Moran, K.P.; Earnshaw, K.B.; Kamp, D.V.D. The Colorado Wind-Profiling Network. J. Atmos. Ocean. Technol. 1984, 1, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Strauch, R.G.; Weber, B.L.; Frisch, A.S.; Little, C.G.; Merritt, D.A.; Moran, K.P.; Welsh, D.C. The Precision and Relative Accuracy of Profiler Wind Measurements. J. Atmos. Ocean. Technol. 1987, 4, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Hogg, D.C.; Decker, M.T.; Guiraud, F.O.; Earnshaw, K.B.; Merritt, D.A.; Moran, K.P.; Sweezy, W.B.; Strauch, R.G.; Westwater, E.R.; Little, C.G. An Automatic Profiler of the Temperature, Wind and Humidity in the Troposphere. J. Appl. Meteor. 1983, 22, 807–831. [Google Scholar] [CrossRef] [Green Version]
- Browning, K.A.; Wexler, R. The Determination of Kinematic Properties of a Wind Field Using Doppler Radar. J. Appl. Meteor. 1968, 7, 105–113. [Google Scholar] [CrossRef]
- Matejka, T.; Srivastava, R.C. An Improved Version of the Extended Velocity-Azimuth Display Analysis of Single-Doppler Radar Data. J. Atmos. Ocean. Technol. 1991, 8, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wei, M.; Shi, Q. First Spaceborne Version of Velocity-Azimuth Display Technique for Wind Field Retrieval on Cloud and Precipitation Radar. Atmosphere 2020, 11, 1089. [Google Scholar] [CrossRef]
- Waldteufel, P.; Corbin, H. On the Analysis of Single-Doppler Radar Data. J. Appl. Meteorol. Clim. 1979, 18, 532–542. [Google Scholar] [CrossRef]
- Larsen, M.F.; Röttger, J. Observations of Thunderstorm Reflectivities and Doppler Velocities Measured at VHF and UHF. J. Atmos. Ocean. Technol. 1987, 4, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Gage, K.S.; Balsley, B.B. Doppler Radar Probing of the Clear Atmosphere. Bull. Amer. Meteor. Soc. 1978, 59, 1074–1094. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form (accessed on 20 May 2022).
# | Pulse Mode | Beam Number | Starting Time | End Time | Start Gate (km) | End Gate (km) |
---|---|---|---|---|---|---|
1 | Long pulse | 9 | 17 July 2021 08:50 | 18 July 2021 08:50 | 1.8 | 45 |
2 | Long pulse | 25 | 18 July 2021 18:30 | 19 July 2021 09:00 | 1.8 | 45 |
3 | Long pulse | 41 | 21 July 2021 13:45 | 21 July 2021 22:00 | 1.8 | 45 |
Coherent integration times | 16 | FFT points | 256 |
Spectral average times | 7 | Sampling frequency (MHz) | 4 |
Receive bandwidth (MHz) | 4 | Beam dwell time (s) | 30 |
Transmitting pulse width (μs) | 2 | Interpulse period (μs) | 1000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Yue, X.; Ding, F.; Ning, B.; Wang, J.; Luo, J.; Wang, Y.; Li, M.; Cai, Y. Initial Tropospheric Wind Observations by Sanya Incoherent Scatter Radar. Remote Sens. 2022, 14, 3138. https://doi.org/10.3390/rs14133138
Zhang N, Yue X, Ding F, Ning B, Wang J, Luo J, Wang Y, Li M, Cai Y. Initial Tropospheric Wind Observations by Sanya Incoherent Scatter Radar. Remote Sensing. 2022; 14(13):3138. https://doi.org/10.3390/rs14133138
Chicago/Turabian StyleZhang, Ning, Xinan Yue, Feng Ding, Baiqi Ning, Junyi Wang, Junhao Luo, Yonghui Wang, Mingyuan Li, and Yihui Cai. 2022. "Initial Tropospheric Wind Observations by Sanya Incoherent Scatter Radar" Remote Sensing 14, no. 13: 3138. https://doi.org/10.3390/rs14133138
APA StyleZhang, N., Yue, X., Ding, F., Ning, B., Wang, J., Luo, J., Wang, Y., Li, M., & Cai, Y. (2022). Initial Tropospheric Wind Observations by Sanya Incoherent Scatter Radar. Remote Sensing, 14(13), 3138. https://doi.org/10.3390/rs14133138