Extending the National Burned Area Composite Time Series of Wildfires in Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. CNFDB: Fire Management Agency Data
2.2. MAFiMS: Bitemporal Landsat Fire Mapping
2.3. C2C: Multitemporal Object-Based Forest Disturbance Mapping
2.4. HANDS: Coarse-Resolution Burned Area Product
2.5. NBAC: Integrating Multiple Sources
2.6. Confidence Intervals for Burned Area
2.7. NWT: Boreal Caribou Undisturbed Habitat
3. Results: Annual Mapping of Fires from 1986 to 2020
3.1. Burned Area Distribution by Product Source
3.2. Annual Burned Area, Fire Attribution, NBAC-Only Fires, and Ecozone Trends
3.3. Confidence Intervals for Burned Area
3.4. NWT Fires and Undisturbed Caribou Habitat
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.L.; Quayle, B.; Howard, S. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Guindon, L.; Gauthier, S.; Manka, F.; Parisien, M.-A.; Whitman, E.; Bernier, P.; Beaudoin, A.; Villemaire, P.; Skakun, R. Trends in Wildfire Burn Severity across Canada, 1985 to 2015. Can. J. For. Res. 2021, 51, 1230–1244. [Google Scholar] [CrossRef]
- Hart, S.J.; Henkelman, J.; McLoughlin, P.D.; Nielsen, S.E.; Truchon-Savard, A.; Johnstone, J.F. Examining Forest Resilience to Changing Fire Frequency in a Fire-prone Region of Boreal Forest. Glob. Change Biol. 2018, 25, 869–884. [Google Scholar] [CrossRef] [PubMed]
- Whitman, E.; Parisien, M.-A.; Thompson, D.K.; Hall, R.J.; Skakun, R.S.; Flannigan, M.D. Variability and Drivers of Burn Severity in the Northwestern Canadian Boreal Forest. Ecosphere 2018, 9, e02128. [Google Scholar] [CrossRef] [Green Version]
- Tymstra, C.; Stocks, B.J.; Cai, X.; Flannigan, M.D. Wildfire Management in Canada: Review, Challenges and Opportunities. Prog. Disaster Sci. 2020, 5, 100045. [Google Scholar] [CrossRef]
- Natural Resources Canada. Canadian National Fire Database. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta. 2022. Available online: https://cwfis.cfs.nrcan.gc.ca/ (accessed on 1 January 2022).
- Stocks, B.J.; Mason, J.A.; Todd, J.B.; Bosch, E.M.; Wotton, B.M.; Amiro, B.D.; Flannigan, M.D.; Hirsch, K.G.; Logan, K.A.; Martell, D.L.; et al. Large Forest Fires in Canada, 1959–1997. J. Geophys. Res. 2003, 108, 8149. [Google Scholar] [CrossRef]
- Skakun, R.; Whitman, E.; Little, J.M.; Parisien, M.-A. Area Burned Adjustments to Historical Wildland Fires in Canada. Environ. Res. Lett. 2021, 16, 064014. [Google Scholar] [CrossRef]
- Hall, R.J.; Skakun, R.S.; Metsaranta, J.M.; Landry, R.; Fraser, R.H.; Raymond, D.; Gartrell, M.; Decker, V.; Little, J. Generating Annual Estimates of Forest Fire Disturbance in Canada: The National Burned Area Composite. Int. J. Wildland Fire 2020, 29, 878–891. [Google Scholar] [CrossRef]
- Kurz, W.A.; Apps, M.J. Developing Canada’s National Forest Carbon Monitoring, Accounting and Reporting System to Meet the Reporting Requirements of the Kyoto Protocol. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 33–43. [Google Scholar] [CrossRef]
- de Groot, W.J.; Landry, R.; Kurz, W.A.; Anderson, K.R.; Englefield, P.; Fraser, R.H.; Hall, R.J.; Banfield, E.; Raymond, D.A.; Decker, V.; et al. Estimating Direct Carbon Emissions from Canadian Wildland Fires. Int. J. Wildland Fire 2007, 16, 593–606. [Google Scholar] [CrossRef]
- Metsaranta, J.M.; Shaw, C.; Kurz, W.A.; Boisvenue, C.; Morken, S. Uncertainty of Inventory-Based Estimates of the Carbon Dynamics of Canada’s Managed Forest (1990–2014). Can. J. For. Res. 2017, 47, 1082–1094. [Google Scholar] [CrossRef]
- Gauthier, S.; Lorente, M.; Kremsater, L.; De Grandpre, L.; Burton, P.J.; Aubin, I.; Hogg, E.H.; Nadeau, S.; Nelson, E.A.; Taylor, A.R.; et al. Tracking Climate Change Effects: Potential Indicators for Canada’s Forests and Forest Sector; Natural Resources Canada, Canadian Forest Service: Ottawa, ON, Canada, 2014; 86p. [Google Scholar]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The Global Landsat Archive: Status, Consolidation, and Direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.L.J.; Pereira, J.M.C.; Carreiras, J.M.B. Fire Frequency Analysis in Portugal (1975–2005), Using Landsat-Based Burnt Area Maps. Int. J. Wildland Fire 2011, 21, 48–60. [Google Scholar] [CrossRef]
- Goodwin, N.R.; Collett, L.J. Development of an Automated Method for Mapping Fire History Captured in Landsat TM and ETM + Time Series across Queensland, Australia. Remote Sens. Environ. 2014, 148, 206–221. [Google Scholar] [CrossRef]
- Guindon, L.; Bernier, P.; Gauthier, S.; Stinson, G.; Villemaire, P.; Beaudoin, A. Missing Forest Cover Gains in Boreal Forests Explained. Ecosphere 2018, 9, e02094. [Google Scholar] [CrossRef] [Green Version]
- Henry, M.C. Comparison of Single-and Multi-Date Landsat Data for Mapping Wildfire Scars in Ocala National Forest, Florida. Photogramm. Eng. Remote Sens. 2008, 74, 881–891. [Google Scholar] [CrossRef] [Green Version]
- Stroppiana, D.; Bordogna, G.; Carrara, P.; Boschetti, M.; Boschetti, L.; Brivio, P.A. A Method for Extracting Burned Areas from Landsat TM/ETM+ Images by Soft Aggregation of Multiple Spectral Indices and a Region Growing Algorithm. ISPRS J. Photogramm. Remote Sens. 2012, 69, 88–102. [Google Scholar] [CrossRef]
- Bastarrika, A.; Alvarado, M.; Artano, K.; Martinez, M.; Mesanza, A.; Torre, L.; Ramo, R.; Chuvieco, E. BAMS: A Tool for Supervised Burned Area Mapping Using Landsat Data. Remote Sens. 2014, 6, 12360–12380. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z. Change Detection Using Landsat Time Series: A Review of Frequencies, Preprocessing, Algorithms, and Applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- French, N.H.F.; Kasischke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. Using Landsat Data to Assess Fire and Burn Severity in the North American Boreal Forest Region: An Overview and Summary of Results. Int. J. Wildland Fire 2008, 17, 443–462. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W.; Campbell, L.B. Mass Data Processing of Time Series Landsat Imagery: Pixels to Data Products for Forest Monitoring. Int. J. Digit. Earth 2016, 9, 1035–1054. [Google Scholar] [CrossRef] [Green Version]
- White, J.C.; Wulder, M.A.; Hermosilla, T.; Coops, N.C.; Hobart, G.W. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Can. J. Remote Sens. 2017, 194, 303–321. [Google Scholar] [CrossRef]
- Natural Resources Canada. The State of Canada’s Forests 2015; Natural Resources Canada, Canadian Forest Service: Ottawa, ON, Canada, 2015; 75p. [Google Scholar]
- Lewis, K.J.; Johnson, C.J.; Karim, N. Fire and lichen dynamics in the Taiga Shield of the Northwest Territories and implications for barren-ground caribou winter forage. J. Veg. Sci. 2019, 30, 448–460. [Google Scholar] [CrossRef]
- Environment Canada. Recovery Strategy for the Woodland Caribou (Rangifer tarandus caribou), Boreal Population, in Canada; Species at Risk Act Recovery Strategy Series; Environment Canada: Ottawa, ON, Canada, 2012. [Google Scholar]
- Kolden, C.A.; Weisberg, P.J. Assessing Accuracy of Manually-Mapped Wildfire Perimeters in Topographically Dissected Areas. Fire Ecol. 2007, 3, 22–31. [Google Scholar] [CrossRef]
- Hantson, S.; Padilla, M.; Corti, D.; Chuvieco, E. Strengths and Weaknesses of MODIS Hotspots to Characterize Global Fire Occurrence. Remote Sens. Environ. 2013, 131, 152–159. [Google Scholar] [CrossRef]
- Fraser, R.; Li, Z.; Cihlar, J. Hotspot and NDVI differencing synergy (HANDS): A new technique for burned area mapping over boreal forest. Remote Sens. Environ. 2000, 74, 362–376. [Google Scholar] [CrossRef]
- Ecological Stratification Working Group. A National Ecological Framework for Canada; Report and National Map at 1:7500 000 Scale; Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch: Ottawa, ON, Canada; Hull, UK, 1995. [Google Scholar]
- Pasher, J.; Seed, E.; Duffe, J. Development of Boreal Ecosystem Anthropogenic Disturbance Layers for Canada Based on 2008 to 2010 Landsat Imagery. Can. J. Remote Sens. 2013, 39, 42–58. [Google Scholar] [CrossRef]
- Government of the Northwest Territories. A Framework for Boreal Caribou Range Planning; Environment and Natural Resources, Government of the Northwest Territories: Yellowknife, NT, Canada, 2019; ISBN 978-0-7708-0266-0. [Google Scholar]
- Hanes, C.C.; Wang, X.; Jain, P.; Parisien, M.-A.; Little, J.M.; Flannigan, M.D. Fire-Regime Changes in Canada over the Last Half Century. Can. J. For. Res. 2019, 49, 256–269. [Google Scholar] [CrossRef]
- Bartels, S.F.; Chen, H.Y.H.; Wulder, M.A.; White, J.C. Trends in Post-Disturbance Recovery Rates of Canada’s Forests Following Wildfire and Harvest. For. Ecol. Manag. 2016, 361, 194–207. [Google Scholar] [CrossRef] [Green Version]
- Boucher, D.; Gauthier, S.; Thiffault, N.; Marchand, W.; Girardin, M.; Urli, M. How Climate Change Might Affect Tree Regeneration Following Fire at Northern Latitudes: A Review. New For. 2020, 51, 543–571. [Google Scholar] [CrossRef] [Green Version]
- Cardille, J.A.; Perez, E.; Crowley, M.A.; Wulder, M.A.; White, J.C.; Hermosilla, T. Multi-Sensor Change Detection for Within-Year Capture and Labelling of Forest Disturbance. Remote Sens. Environ. 2022, 268, 112741. [Google Scholar] [CrossRef]
- Ministry of Natural Resources. NRVIS/OLIW Data Management Model for Fire Disturbance Area; Land Information Ontario, 2006. Version 1.0; Ministry of Natural Resources: Peterborough, ON, Canada, 2006. [Google Scholar]
- Bridge, S.R.J.; Miyanishi, K.; Johnson, E.A. A Critical Evaluation of Fire Suppression Effects in the Boreal Forest of Ontario. For. Sci. 2005, 51, 41–50. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Report on the Progress of Recovery Strategy Implementation for the Woodland Caribou (Rangifer Tarandus Caribou), Boreal Population, in Canada for the Period 2012–2017; Species at Risk Act Recovery Strategy Series; Environment and Climate Change Canada: Ottawa, ON, Canada, 2017. [Google Scholar]
- Kansas, J.; Vargas, J.; Skatter, H.G.; Balicki, B.; McCullum, K. Using Landsat Imagery to Backcast Fire and Post-Fire Residuals in the Boreal Shield of Saskatchewan: Implications for Woodland Caribou Management. Int. J. Wildland Fire 2016, 25, 597–607. [Google Scholar] [CrossRef]
- Russell, K.L.; Johnson, C.J. Post-Fire Dynamics of Terrestrial Lichens: Implications for the Recovery of Woodland Caribou Winter Range. For. Ecol. Manag. 2019, 434, 1–17. [Google Scholar] [CrossRef]
- Chen, W.; Moriya, K.; Sakai, T.; Koyama, L.; Cao, C.X. Mapping a burned forest area from Landsat TM data by multiple methods. Geomat. Nat. Hazards Risk. 2016, 7, 384–402. [Google Scholar] [CrossRef] [Green Version]
- Kurz, W.; Dymond, C.; White, T.; Stinson, G.; Shaw, C.; Rampley, G.; Smyth, C.; Simpson, B.; Neilson, E.; Trofymow, J.; et al. CBM-CFS3: A Model of Carbon-Dynamics in Forestry and Land-Use Change Implementing IPCC Standards. Ecol. Model. 2009, 220, 480–504. [Google Scholar] [CrossRef]
- Kafka, V.; Gauthier, S.; Bergeron, Y. Fire Impacts and Crowning in the Boreal Forest: Study of a Large Wildfire in Western Quebec. Int. J. Wildland Fire 2001, 10, 119–127. [Google Scholar] [CrossRef]
- Ferster, C.; Eskelson, B.; Andison, D.; LeMay, V. Vegetation Mortality within Natural Wildfire Events in the Western Canadian Boreal Forest: What Burns and Why? Forests 2016, 7, 187. [Google Scholar] [CrossRef] [Green Version]
Unit | NWT: CNFDB | NWT: NBAC | |
---|---|---|---|
Number of fires mapped | count | 2737 | 3196 |
Average annual area burned | ha | 585,943 | 493,109 |
Total area burned of all fires | ha | 18,750,185 | 15,779,487 |
Difference in area burned (NBAC minus CNFDB) | ha | –2,970,698 | |
Percent change of total area (NBAC minus CNFDB) | % | –16 | |
NBAC-only burned area (unreported in CNFDB) | ha | 478,107 |
NT1 Planning Region | Proportion of NT1 Area (%) | Change in Undisturbed Area Using NBAC (ha) | Proportion of Undisturbed Area Using NBAC (%) | Proportion of Undisturbed Area Using CNFDB (%) |
---|---|---|---|---|
Inuvialuit | 7 | 7518 | 97 | 97 |
Gwich′in | 9 | 143,053 | 71 | 67 |
Sahtú | 34 | 302,160 | 80 | 78 |
Wek’èezhìi | 11 | 447,536 | 68 | 59 |
Southern NWT | 37 | 735,928 | 58 | 54 |
Yukon | 2 | −3402 | 77 | 78 |
Total | 100 | 1,632,793 | 71 | 68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skakun, R.; Castilla, G.; Metsaranta, J.; Whitman, E.; Rodrigue, S.; Little, J.; Groenewegen, K.; Coyle, M. Extending the National Burned Area Composite Time Series of Wildfires in Canada. Remote Sens. 2022, 14, 3050. https://doi.org/10.3390/rs14133050
Skakun R, Castilla G, Metsaranta J, Whitman E, Rodrigue S, Little J, Groenewegen K, Coyle M. Extending the National Burned Area Composite Time Series of Wildfires in Canada. Remote Sensing. 2022; 14(13):3050. https://doi.org/10.3390/rs14133050
Chicago/Turabian StyleSkakun, Rob, Guillermo Castilla, Juha Metsaranta, Ellen Whitman, Sebastien Rodrigue, John Little, Kathleen Groenewegen, and Matthew Coyle. 2022. "Extending the National Burned Area Composite Time Series of Wildfires in Canada" Remote Sensing 14, no. 13: 3050. https://doi.org/10.3390/rs14133050