Do Seabirds Control Wind Drift during Their Migration across the Strait of Gibraltar? A Study Using Remote Tracking by Radar
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Do Seabirds Compensate for Wind Drift during Their Migrations across the Strait of Gibraltar?
4.2. The Case of a Gliding Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- González-Solís, J.; Felicísimo, A.M.; Fox, J.W.; Afanasyev, V.; Kolbeinsson, Y.; Muñoz, J. Influence of sea surface winds on Shearwater migration detours. Mar. Ecol. Prog. Ser. 2009, 391, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Weimerskirch, H.; Bishop, C.; Jeanniard-du-Dot, T.; Prudor, A.; Sachs, G. Frigate birds track atmospheric conditions over months-long transoceanic flights. Science 2016, 353, 74–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wynn, J.; Collet, J.; Prudor, A.; Corbeau, A.; Padget, O.; Guilford, T.; Weimerskirch, H. Young frigatebirds learn how to compensate for wind drift. Proc. R. Soc. B 2020, 287, 20201970. [Google Scholar] [CrossRef] [PubMed]
- Gibb, R.; Shoji, A.; Fayet, A.L.; Perrins, C.M.; Guilford, T.; Freeman, R. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird. J. R. Soc. Interface 2017, 14, 20170262. [Google Scholar] [CrossRef]
- Alerstam, T. Wind as selective agent in bird migration. Ornis Scand. 1979, 10, 76–93. [Google Scholar] [CrossRef]
- Alerstam, T. Bird Migration; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Liechti, F.; Bruderer, B. The relevance of wind for optimal migration theory. J. Avian Biol. 1998, 29, 561–568. [Google Scholar] [CrossRef]
- Erni, B.; Liechti, F.; Bruderer, B. The role of wind in passerine autumn migration between Europe and Africa. Behav. Ecol. 2005, 16, 732–740. [Google Scholar] [CrossRef] [Green Version]
- Liechti, F.; Schmaljohann, H. Flight altitudes of nocturnal spring migrants over the Sahara governed by wind. Ostrich 2007, 78, 337–341. [Google Scholar] [CrossRef]
- Richardson, W.J. Wind and orientation of migrating birds: A review. Experienta 1991, 46, 416–425. [Google Scholar] [CrossRef]
- Alerstam, T. Optimal use of wind by migrating birds: Combined drift and overcompensation. J. Theor. Biol. 1979, 79, 341–353. [Google Scholar] [CrossRef]
- Alerstam, T. Bird migration performance on the basis of flight mechanics and trigonometry. In Biomechanics in Animal Behaviour; Domenici, P., Blake, R.W., Eds.; BIOS Scientific Publishers Ltd.: Oxford, UK, 2000; pp. 105–123. [Google Scholar]
- Stoddard, K.; Marsden, J.E.; Williams, T.C. Computer simulation of autumnal bird migration over the western North Atlantic. Anim. Behav. 1983, 31, 173–180. [Google Scholar] [CrossRef]
- Liechti, F. Modelling optimal heading and air speed of migrating birds in relation to energy expenditure and wind influence. J. Avian Biol. 1995, 26, 330–336. [Google Scholar] [CrossRef]
- Alerstam, T.; Hedenström, A. The development of bird migration theory. J. Avian Biol. 1998, 29, 343–369. [Google Scholar] [CrossRef]
- Green, M.; Alerstam, T. The problem of estimating wind drift in migrating birds. J. Theor. Biol. 2002, 218, 485–496. [Google Scholar] [CrossRef]
- Becciu, P.; Menz, M.H.M.; Aurbach, A.; Cabrera-Cruz, S.A.; Wainwright, C.E.; Scacco, M.; Ciach, M.; Pettersson, L.B.; Maggini, I.; Arroyo, G.M.; et al. Environmental effects on flying migrants revealed by radar. Ecography 2019, 42, 942–955. [Google Scholar] [CrossRef] [Green Version]
- Alerstam, T.; Pettersson, S.G. Do birds use waves for orientation when migrating across the sea? Nature 1976, 259, 205–207. [Google Scholar] [CrossRef]
- Green, M.; Alerstam, T.; Gudmundsson, G.A.; Hedenström, A.; Piersma, T. Do Arctic waders use adaptive wind drift? J. Avian Biol. 2004, 35, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.C.; Williams, J.M. An oceanic mass migration of land birds. Sci. Am. 1978, 239, 138–145. [Google Scholar] [CrossRef]
- Tarroux, A.; Weimerskirch, H.; Wang, S.H.; Bromwich, D.H.; Cherel, Y.; Kato, A.; Ropert-Coudert, Y.; Varpe, Ø.; Yoccoz, N.G.; Descamps, S. Flexible flight response to challenging wind conditions in a commuting Antarctic seabird: Do you catch the drift? Anim. Behav. 2016, 113, 99–112. [Google Scholar] [CrossRef]
- Pennycuick, C.J. Flight of seabirds. In Seabirds: Feeding Biology and Role in Marine Ecosystems; Croxall, J., Ed.; Cambridge University Press: Cambridge, UK, 1987; pp. 43–62. [Google Scholar]
- Alerstam, T.; Gudmundsson, G.A. Migration patterns of Tundra birds: Tracking radar observations along the Northeast Passage. Arctic 1999, 52, 346–371. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, G.A.; Alerstam, T.; Green, M.; Hedenström, A. Radar observations of Arctic bird migration at the Northwest Passage, Canada. Arctic 2002, 55, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Hedenström, A.; Alerstam, T.; Bäckman, J.; Gudmundsson, G.A.; Henningsson, S.; Karlsson, H.; Rosén, M.; Strandberg, R. Radar observations of Arctic bird migration in the Beringia region. Arctic 2009, 62, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Paiva, V.H.; Guilford, T.; Meade, J.; Geraldes, P.; Ramos, J.A.; Garthe, S. Flight dynamics of Cory’s shearwater foraging in a coastal environment. Zoology 2010, 113, 47–56. [Google Scholar] [CrossRef]
- Mateos-Rodríguez, M.; Arroyo, G.M. Ocean surface winds drive local-scale movements within long-distance migrations of seabirds. Mar. Biol. 2011, 158, 329–339. [Google Scholar] [CrossRef]
- Arroyo, G.M.; Cuenca, D.; Barrios, L.; de la Cruz, A.; Ramirez, J.; Onrubia, A.; González, M.; Muñoz, A.R.; Paterson, A.M. Seguimiento de la migración de aves marinas en el Estrecho de Gibraltar (SO España): El Programa Migres Marinas. In Actas del 6 Congreso del GIAM y el Taller Internacional Sobre la Ecología de Paiños y Pardelas en el Sur de Europa; Boletín del Grupo Ibérico de Aves Marinas; El Grupo Ibérico de Aves Marinas: A Coruña, Spain, 2011; Volume 34, pp. 43–47. [Google Scholar]
- Arroyo, G.M.; Mateos-Rodríguez, M.; Muñoz, A.R.; De la Cruz, A.; Cuenca, D.; Onrubia, A. New population estimates of a critically endangered species, the Balearic Shearwater Puffinus mauretanicus, based on coastal migration counts. Bird Conserv. Int. 2016, 26, 87–99. [Google Scholar] [CrossRef]
- Bruderer, B. The study of bird migration by radar. Part 1: The technical basis. Naturwissenschaften 1997, 84, 1–8. [Google Scholar] [CrossRef]
- ESRI. ArcView GIS 3.2; Environmental Systems Research Institute, Inc.: Redlands, CA, USA, 1999. [Google Scholar]
- Bruderer, B. Radarbeobachtungen über den Frühlingszug im Schweizerischen Mittelland. (Ein Beitrag zum Problem der Witterungsabhängigkeit des Vogelzuges). Ornithol. Beobach. 1971, 68, 89–158. [Google Scholar]
- Shamoun-Baranes, J.; van Loon, E.; Liechti, F.; Bouten, W. Analyzing the effect of wind on flight: Pitfalls and solutions. J. Ex Biol. 2007, 210, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Batschelet, E. Circular Statistics in Biology; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Warham, J. Wing loadings, wing shapes, and flight capabilities of Procellariiformes. N. Z. J. Zool. 1977, 4, 73–83. [Google Scholar] [CrossRef]
- Meseguer, J.; Álvarez, J.C.; Pérez, A. Formas de Retrasar la Entrada en Pérdidas en las Alas de las Aves; IDR/PA 0104; Instituto Universitario de Microgravedad “Ignacio Da Riva”, Universidad Politécnica de Madrid: Madrid, Spain, 2004. [Google Scholar]
- Oriana Software, Version 2.02(e); Kovach Computing Services: Pentraeth, UK, 2007.
- Cremers, J.; Klugkist, I. One direction? A tutorial for circular data analysis using R with examples in cognitive psychology. Front. Psychol. 2018, 9, 2040. [Google Scholar] [CrossRef]
- Bergman, G. Effects of wind conditions on the autumn migration of waterfowl between the White Sea area and the Baltic region. Oikos 1978, 30, 393–397. [Google Scholar] [CrossRef]
- Bingman, V.; Able, K. Kerlinger, Wind drift, compensation, and the use of landmarks by nocturnal bird migrants. Anim. Behav. 1982, 30, 49–53. [Google Scholar] [CrossRef]
- Desholm, M. How much do small-scale changes in flight direction increase overall migration distance? J. Avian Biol. 2003, 34, 155–158. [Google Scholar] [CrossRef]
- Simons, A.M. Many wrongs: The advantage of group navigation. Trends Ecol. Evol. 2004, 19, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Desholm, M.; Kahlert, J. Avian collision risk at an offshore wind farm. Biol. Lett. 2005, 1, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Mateos-Rodríguez, M. Radar Technology Applied to the Study of Seabird Migration across the Strait of Gibraltar. Ph.D. Thesis, University of Cadiz, Cadiz, Spain, 2009. [Google Scholar]
- Mateos-Rodríguez, M.; Bruderer, B. Flight speeds of migrating seabirds in the Strait of Gibraltar and their relation to wind. J. Ornithol. 2012, 153, 881–889. [Google Scholar] [CrossRef]
- Felicísimo, A.M.; Muñoz, J.; González-Solís, J. Ocean Surface Winds Drive Dynamics of Transoceanic Aerial Movements. PLoS ONE 2008, 3, e2928. [Google Scholar] [CrossRef] [Green Version]
- González-Solís, J.; Croxall, J.; Oro, D.; Ruiz, X. Trans-equatorial migration and mixing in the wintering areas of a pelagic seabird. Front. Ecol. Environ. 2007, 5, 297–301. [Google Scholar]
- Navarrete, J. Post-breeding migration of Cory’s Shearwater Calonectris diomedea in Ceuta coastal waters. Bol. Grupo Ibérico Aves Mar. 2008, 31, 2–6. [Google Scholar]
- Becciu, P.; Panuccio, M.; Catoni, C.; Dell’Omo, G.; Sapir, N. Contrasting aspects of tailwinds and asymmetrical response to crosswinds in soaring migrants. Behav. Ecol. Sociobiol. 2018, 72, 28. [Google Scholar] [CrossRef]
- Young, I.R.; Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 2019, 364, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Spear, L.B.; Ainley, D.G. Flight behaviour of seabirds in relation to wind direction and wing morphology. Ibis 1997, 139, 221–233. [Google Scholar] [CrossRef]
Species | Body Mass (g) | Wing Span (mm) | Wing Area (cm2) | Wing Loading (Kg m−2) | Aspect Ratio | Fight Style |
---|---|---|---|---|---|---|
Cory’s S.a | 946 | 1210 | 1230 | 7.7 | 11.9 | gliding |
Balearic S.b | 570 | 840 | 620 | 9.2 | 11.4 | flap-gliding |
Gannet c | 3010 | 1850 | 2620 | 11.5 | 13.1 | flap-gliding |
Puffin c | 398 | 549 | 369 | 10.8 | 8.2 | continuous flapping |
Razorbill c | 620 | 661 | 462 | 13.4 | 9.5 | continuous flapping |
Species | Season | N° of Tracks | Time (s) | Track Direction (Degrees) | Heading Direction (Degrees) | Wind Direction (Degrees) | Wind Speed (m/s) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | a.d. | Mean | a.d. | Mean | a.d. | Mean | s.d. | ||||
Cory’s shearwater | Spring | 43 | 10,325 | 113 | 16.4 | 117 | 23.2 | 289 | 52.7 | 5.9 | 2.1 |
Autumn | 59 | 10,380 | 271 | 22.0 | 276 | 25.5 | 57 | 94.6 | 4.3 | 2.5 | |
Balearic shearwater | Spring | 19 | 2285 | 276 | 14.8 | 278 | 18.6 | 270 | 51.6 | 3.6 | 3.1 |
Autumn | 30 | 3605 | 120 | 9.9 | 122 | 15.3 | 29 | 121.4 | 2.3 | 1.6 | |
Gannet | Spring | 62 | 10,310 | 278 | 12.3 | 277 | 15.2 | 268 | 40.9 | 3.9 | 2.0 |
Autumn | 53 | 6225 | 114 | 11.5 | 114 | 12.3 | 173 | 123.7 | 2.3 | 1.8 | |
Auks | Spring | 52 | 5415 | 277 | 8.5 | 278 | 9.8 | 262 | 91.1 | 6.9 | 2.8 |
Species | Season | Magnitude of Drift Btrack | Magnitude of Compensation Bheading | Recorded Behaviour |
---|---|---|---|---|
Cory’s shearwater | Spring | 0.7 ** | −0.3, p > 0.25 | Partial drift |
Autumn | −0.1, p > 0.5 | −1.1 ** | Full compensation | |
Balearic shearwater | Spring | −0.1, p > 0.5 | −1.1 * | Full compensation |
Autumn | −0.1, p > 0.5 | −1.1 ** | Full compensation | |
Gannet | Spring | 0.2, p > 0.25 | −0.8 * | Full compensation |
Autumn | −0.1, p > 0.5 | −1.0 ** | Full compensation | |
Auks | Spring | −0.2, p >0.05 | −1.2 *** | Full compensation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz Arroyo, G.; Mateos-Rodríguez, M. Do Seabirds Control Wind Drift during Their Migration across the Strait of Gibraltar? A Study Using Remote Tracking by Radar. Remote Sens. 2022, 14, 2792. https://doi.org/10.3390/rs14122792
Muñoz Arroyo G, Mateos-Rodríguez M. Do Seabirds Control Wind Drift during Their Migration across the Strait of Gibraltar? A Study Using Remote Tracking by Radar. Remote Sensing. 2022; 14(12):2792. https://doi.org/10.3390/rs14122792
Chicago/Turabian StyleMuñoz Arroyo, Gonzalo, and María Mateos-Rodríguez. 2022. "Do Seabirds Control Wind Drift during Their Migration across the Strait of Gibraltar? A Study Using Remote Tracking by Radar" Remote Sensing 14, no. 12: 2792. https://doi.org/10.3390/rs14122792
APA StyleMuñoz Arroyo, G., & Mateos-Rodríguez, M. (2022). Do Seabirds Control Wind Drift during Their Migration across the Strait of Gibraltar? A Study Using Remote Tracking by Radar. Remote Sensing, 14(12), 2792. https://doi.org/10.3390/rs14122792