Do Seabirds Control Wind Drift during Their Migration across the Strait of Gibraltar? A Study Using Remote Tracking by Radar
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Do Seabirds Compensate for Wind Drift during Their Migrations across the Strait of Gibraltar?
4.2. The Case of a Gliding Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- González-Solís, J.; Felicísimo, A.M.; Fox, J.W.; Afanasyev, V.; Kolbeinsson, Y.; Muñoz, J. Influence of sea surface winds on Shearwater migration detours. Mar. Ecol. Prog. Ser. 2009, 391, 221–230. [Google Scholar] [CrossRef]
- Weimerskirch, H.; Bishop, C.; Jeanniard-du-Dot, T.; Prudor, A.; Sachs, G. Frigate birds track atmospheric conditions over months-long transoceanic flights. Science 2016, 353, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.; Collet, J.; Prudor, A.; Corbeau, A.; Padget, O.; Guilford, T.; Weimerskirch, H. Young frigatebirds learn how to compensate for wind drift. Proc. R. Soc. B 2020, 287, 20201970. [Google Scholar] [CrossRef] [PubMed]
- Gibb, R.; Shoji, A.; Fayet, A.L.; Perrins, C.M.; Guilford, T.; Freeman, R. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird. J. R. Soc. Interface 2017, 14, 20170262. [Google Scholar] [CrossRef]
- Alerstam, T. Wind as selective agent in bird migration. Ornis Scand. 1979, 10, 76–93. [Google Scholar] [CrossRef]
- Alerstam, T. Bird Migration; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Liechti, F.; Bruderer, B. The relevance of wind for optimal migration theory. J. Avian Biol. 1998, 29, 561–568. [Google Scholar] [CrossRef]
- Erni, B.; Liechti, F.; Bruderer, B. The role of wind in passerine autumn migration between Europe and Africa. Behav. Ecol. 2005, 16, 732–740. [Google Scholar] [CrossRef]
- Liechti, F.; Schmaljohann, H. Flight altitudes of nocturnal spring migrants over the Sahara governed by wind. Ostrich 2007, 78, 337–341. [Google Scholar] [CrossRef]
- Richardson, W.J. Wind and orientation of migrating birds: A review. Experienta 1991, 46, 416–425. [Google Scholar] [CrossRef]
- Alerstam, T. Optimal use of wind by migrating birds: Combined drift and overcompensation. J. Theor. Biol. 1979, 79, 341–353. [Google Scholar] [CrossRef]
- Alerstam, T. Bird migration performance on the basis of flight mechanics and trigonometry. In Biomechanics in Animal Behaviour; Domenici, P., Blake, R.W., Eds.; BIOS Scientific Publishers Ltd.: Oxford, UK, 2000; pp. 105–123. [Google Scholar]
- Stoddard, K.; Marsden, J.E.; Williams, T.C. Computer simulation of autumnal bird migration over the western North Atlantic. Anim. Behav. 1983, 31, 173–180. [Google Scholar] [CrossRef]
- Liechti, F. Modelling optimal heading and air speed of migrating birds in relation to energy expenditure and wind influence. J. Avian Biol. 1995, 26, 330–336. [Google Scholar] [CrossRef]
- Alerstam, T.; Hedenström, A. The development of bird migration theory. J. Avian Biol. 1998, 29, 343–369. [Google Scholar] [CrossRef]
- Green, M.; Alerstam, T. The problem of estimating wind drift in migrating birds. J. Theor. Biol. 2002, 218, 485–496. [Google Scholar] [CrossRef]
- Becciu, P.; Menz, M.H.M.; Aurbach, A.; Cabrera-Cruz, S.A.; Wainwright, C.E.; Scacco, M.; Ciach, M.; Pettersson, L.B.; Maggini, I.; Arroyo, G.M.; et al. Environmental effects on flying migrants revealed by radar. Ecography 2019, 42, 942–955. [Google Scholar] [CrossRef]
- Alerstam, T.; Pettersson, S.G. Do birds use waves for orientation when migrating across the sea? Nature 1976, 259, 205–207. [Google Scholar] [CrossRef]
- Green, M.; Alerstam, T.; Gudmundsson, G.A.; Hedenström, A.; Piersma, T. Do Arctic waders use adaptive wind drift? J. Avian Biol. 2004, 35, 305–315. [Google Scholar] [CrossRef]
- Williams, T.C.; Williams, J.M. An oceanic mass migration of land birds. Sci. Am. 1978, 239, 138–145. [Google Scholar] [CrossRef]
- Tarroux, A.; Weimerskirch, H.; Wang, S.H.; Bromwich, D.H.; Cherel, Y.; Kato, A.; Ropert-Coudert, Y.; Varpe, Ø.; Yoccoz, N.G.; Descamps, S. Flexible flight response to challenging wind conditions in a commuting Antarctic seabird: Do you catch the drift? Anim. Behav. 2016, 113, 99–112. [Google Scholar] [CrossRef]
- Pennycuick, C.J. Flight of seabirds. In Seabirds: Feeding Biology and Role in Marine Ecosystems; Croxall, J., Ed.; Cambridge University Press: Cambridge, UK, 1987; pp. 43–62. [Google Scholar]
- Alerstam, T.; Gudmundsson, G.A. Migration patterns of Tundra birds: Tracking radar observations along the Northeast Passage. Arctic 1999, 52, 346–371. [Google Scholar] [CrossRef]
- Gudmundsson, G.A.; Alerstam, T.; Green, M.; Hedenström, A. Radar observations of Arctic bird migration at the Northwest Passage, Canada. Arctic 2002, 55, 21–43. [Google Scholar] [CrossRef]
- Hedenström, A.; Alerstam, T.; Bäckman, J.; Gudmundsson, G.A.; Henningsson, S.; Karlsson, H.; Rosén, M.; Strandberg, R. Radar observations of Arctic bird migration in the Beringia region. Arctic 2009, 62, 25–37. [Google Scholar] [CrossRef][Green Version]
- Paiva, V.H.; Guilford, T.; Meade, J.; Geraldes, P.; Ramos, J.A.; Garthe, S. Flight dynamics of Cory’s shearwater foraging in a coastal environment. Zoology 2010, 113, 47–56. [Google Scholar] [CrossRef]
- Mateos-Rodríguez, M.; Arroyo, G.M. Ocean surface winds drive local-scale movements within long-distance migrations of seabirds. Mar. Biol. 2011, 158, 329–339. [Google Scholar] [CrossRef]
- Arroyo, G.M.; Cuenca, D.; Barrios, L.; de la Cruz, A.; Ramirez, J.; Onrubia, A.; González, M.; Muñoz, A.R.; Paterson, A.M. Seguimiento de la migración de aves marinas en el Estrecho de Gibraltar (SO España): El Programa Migres Marinas. In Actas del 6 Congreso del GIAM y el Taller Internacional Sobre la Ecología de Paiños y Pardelas en el Sur de Europa; Boletín del Grupo Ibérico de Aves Marinas; El Grupo Ibérico de Aves Marinas: A Coruña, Spain, 2011; Volume 34, pp. 43–47. [Google Scholar]
- Arroyo, G.M.; Mateos-Rodríguez, M.; Muñoz, A.R.; De la Cruz, A.; Cuenca, D.; Onrubia, A. New population estimates of a critically endangered species, the Balearic Shearwater Puffinus mauretanicus, based on coastal migration counts. Bird Conserv. Int. 2016, 26, 87–99. [Google Scholar] [CrossRef]
- Bruderer, B. The study of bird migration by radar. Part 1: The technical basis. Naturwissenschaften 1997, 84, 1–8. [Google Scholar] [CrossRef]
- ESRI. ArcView GIS 3.2; Environmental Systems Research Institute, Inc.: Redlands, CA, USA, 1999. [Google Scholar]
- Bruderer, B. Radarbeobachtungen über den Frühlingszug im Schweizerischen Mittelland. (Ein Beitrag zum Problem der Witterungsabhängigkeit des Vogelzuges). Ornithol. Beobach. 1971, 68, 89–158. [Google Scholar]
- Shamoun-Baranes, J.; van Loon, E.; Liechti, F.; Bouten, W. Analyzing the effect of wind on flight: Pitfalls and solutions. J. Ex Biol. 2007, 210, 82–90. [Google Scholar] [CrossRef]
- Batschelet, E. Circular Statistics in Biology; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Warham, J. Wing loadings, wing shapes, and flight capabilities of Procellariiformes. N. Z. J. Zool. 1977, 4, 73–83. [Google Scholar] [CrossRef]
- Meseguer, J.; Álvarez, J.C.; Pérez, A. Formas de Retrasar la Entrada en Pérdidas en las Alas de las Aves; IDR/PA 0104; Instituto Universitario de Microgravedad “Ignacio Da Riva”, Universidad Politécnica de Madrid: Madrid, Spain, 2004. [Google Scholar]
- Oriana Software, Version 2.02(e); Kovach Computing Services: Pentraeth, UK, 2007.
- Cremers, J.; Klugkist, I. One direction? A tutorial for circular data analysis using R with examples in cognitive psychology. Front. Psychol. 2018, 9, 2040. [Google Scholar] [CrossRef]
- Bergman, G. Effects of wind conditions on the autumn migration of waterfowl between the White Sea area and the Baltic region. Oikos 1978, 30, 393–397. [Google Scholar] [CrossRef]
- Bingman, V.; Able, K. Kerlinger, Wind drift, compensation, and the use of landmarks by nocturnal bird migrants. Anim. Behav. 1982, 30, 49–53. [Google Scholar] [CrossRef]
- Desholm, M. How much do small-scale changes in flight direction increase overall migration distance? J. Avian Biol. 2003, 34, 155–158. [Google Scholar] [CrossRef]
- Simons, A.M. Many wrongs: The advantage of group navigation. Trends Ecol. Evol. 2004, 19, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Desholm, M.; Kahlert, J. Avian collision risk at an offshore wind farm. Biol. Lett. 2005, 1, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Mateos-Rodríguez, M. Radar Technology Applied to the Study of Seabird Migration across the Strait of Gibraltar. Ph.D. Thesis, University of Cadiz, Cadiz, Spain, 2009. [Google Scholar]
- Mateos-Rodríguez, M.; Bruderer, B. Flight speeds of migrating seabirds in the Strait of Gibraltar and their relation to wind. J. Ornithol. 2012, 153, 881–889. [Google Scholar] [CrossRef]
- Felicísimo, A.M.; Muñoz, J.; González-Solís, J. Ocean Surface Winds Drive Dynamics of Transoceanic Aerial Movements. PLoS ONE 2008, 3, e2928. [Google Scholar] [CrossRef]
- González-Solís, J.; Croxall, J.; Oro, D.; Ruiz, X. Trans-equatorial migration and mixing in the wintering areas of a pelagic seabird. Front. Ecol. Environ. 2007, 5, 297–301. [Google Scholar]
- Navarrete, J. Post-breeding migration of Cory’s Shearwater Calonectris diomedea in Ceuta coastal waters. Bol. Grupo Ibérico Aves Mar. 2008, 31, 2–6. [Google Scholar]
- Becciu, P.; Panuccio, M.; Catoni, C.; Dell’Omo, G.; Sapir, N. Contrasting aspects of tailwinds and asymmetrical response to crosswinds in soaring migrants. Behav. Ecol. Sociobiol. 2018, 72, 28. [Google Scholar] [CrossRef]
- Young, I.R.; Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 2019, 364, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Spear, L.B.; Ainley, D.G. Flight behaviour of seabirds in relation to wind direction and wing morphology. Ibis 1997, 139, 221–233. [Google Scholar] [CrossRef]
Species | Body Mass (g) | Wing Span (mm) | Wing Area (cm2) | Wing Loading (Kg m−2) | Aspect Ratio | Fight Style |
---|---|---|---|---|---|---|
Cory’s S.a | 946 | 1210 | 1230 | 7.7 | 11.9 | gliding |
Balearic S.b | 570 | 840 | 620 | 9.2 | 11.4 | flap-gliding |
Gannet c | 3010 | 1850 | 2620 | 11.5 | 13.1 | flap-gliding |
Puffin c | 398 | 549 | 369 | 10.8 | 8.2 | continuous flapping |
Razorbill c | 620 | 661 | 462 | 13.4 | 9.5 | continuous flapping |
Species | Season | N° of Tracks | Time (s) | Track Direction (Degrees) | Heading Direction (Degrees) | Wind Direction (Degrees) | Wind Speed (m/s) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | a.d. | Mean | a.d. | Mean | a.d. | Mean | s.d. | ||||
Cory’s shearwater | Spring | 43 | 10,325 | 113 | 16.4 | 117 | 23.2 | 289 | 52.7 | 5.9 | 2.1 |
Autumn | 59 | 10,380 | 271 | 22.0 | 276 | 25.5 | 57 | 94.6 | 4.3 | 2.5 | |
Balearic shearwater | Spring | 19 | 2285 | 276 | 14.8 | 278 | 18.6 | 270 | 51.6 | 3.6 | 3.1 |
Autumn | 30 | 3605 | 120 | 9.9 | 122 | 15.3 | 29 | 121.4 | 2.3 | 1.6 | |
Gannet | Spring | 62 | 10,310 | 278 | 12.3 | 277 | 15.2 | 268 | 40.9 | 3.9 | 2.0 |
Autumn | 53 | 6225 | 114 | 11.5 | 114 | 12.3 | 173 | 123.7 | 2.3 | 1.8 | |
Auks | Spring | 52 | 5415 | 277 | 8.5 | 278 | 9.8 | 262 | 91.1 | 6.9 | 2.8 |
Species | Season | Magnitude of Drift Btrack | Magnitude of Compensation Bheading | Recorded Behaviour |
---|---|---|---|---|
Cory’s shearwater | Spring | 0.7 ** | −0.3, p > 0.25 | Partial drift |
Autumn | −0.1, p > 0.5 | −1.1 ** | Full compensation | |
Balearic shearwater | Spring | −0.1, p > 0.5 | −1.1 * | Full compensation |
Autumn | −0.1, p > 0.5 | −1.1 ** | Full compensation | |
Gannet | Spring | 0.2, p > 0.25 | −0.8 * | Full compensation |
Autumn | −0.1, p > 0.5 | −1.0 ** | Full compensation | |
Auks | Spring | −0.2, p >0.05 | −1.2 *** | Full compensation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz Arroyo, G.; Mateos-Rodríguez, M. Do Seabirds Control Wind Drift during Their Migration across the Strait of Gibraltar? A Study Using Remote Tracking by Radar. Remote Sens. 2022, 14, 2792. https://doi.org/10.3390/rs14122792
Muñoz Arroyo G, Mateos-Rodríguez M. Do Seabirds Control Wind Drift during Their Migration across the Strait of Gibraltar? A Study Using Remote Tracking by Radar. Remote Sensing. 2022; 14(12):2792. https://doi.org/10.3390/rs14122792
Chicago/Turabian StyleMuñoz Arroyo, Gonzalo, and María Mateos-Rodríguez. 2022. "Do Seabirds Control Wind Drift during Their Migration across the Strait of Gibraltar? A Study Using Remote Tracking by Radar" Remote Sensing 14, no. 12: 2792. https://doi.org/10.3390/rs14122792
APA StyleMuñoz Arroyo, G., & Mateos-Rodríguez, M. (2022). Do Seabirds Control Wind Drift during Their Migration across the Strait of Gibraltar? A Study Using Remote Tracking by Radar. Remote Sensing, 14(12), 2792. https://doi.org/10.3390/rs14122792