Characteristics of the Spatio-Temporal Dynamics of Aerosols in Central Asia and Their Influencing Factors
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. MODIS AOD
3.2. Ground-Based Observation AOD
3.3. Environmental Factor Data
3.4. Geographic Detector Model
3.5. LUCC Contribution Calculation
4. Results and Analysis
4.1. MODIS AOD Data Verification
4.2. AOD Spatio-Temporal Dynamic Characteristics
4.2.1. Multi-Year Average AOD Distribution
4.2.2. Inter-Annual AOD Distribution and Variation
4.2.3. AOD Distribution and Changes in Different Seasons
4.3. AOD Environmental Impact Factors
4.3.1. Single-Factor Effect Analysis
4.3.2. Two-Factor Interaction Analysis
4.3.3. Ranges of Risks Affecting AOD Distribution
5. Discussion
5.1. Contribution of LUCC to AOD
5.2. Impact of Desertification on AOD
- (1)
- The temporal and spatial distributions of the AOD in Central Asia were uneven. The average AOD in Xinjiang was significantly higher than that in the five Central Asian countries. The high-value areas were mainly located in the Aral Sea and Ebinur Lake in Xinjiang, and the peripheral areas of the Tarim Basin. The low-value area was in the Pamir Plateau, an area bordering Tajikistan and Xinjiang. Additionally, the AOD of the mountains and hills in eastern Kazakhstan was relatively low. The inter-annual variation in the AOD was not significant, but there were notable seasonal differences. The AOD value was the highest in the spring and lowest in the winter. Dust aerosols were the main aerosol types in Central Asia.
- (2)
- The results showed that the relative humidity and precipitation had a significant influence on the distribution of the AOD in Central Asia. There was no significant difference between them. The combined action of the temperature and relative humidity had the greatest influence on the temporal and spatials distribution of the AOD, which was a two-factor enhancement.
- (3)
- The LUCC directly affects the temporal and spatial distributions of the AOD. The contribution of different land types to the AOD in Central Asia increased with an increase in the area: grassland > unutilised land > cultivated land > water body > forest land > construction land. The AODs of waterbodies and unutilised land were the highest, whereas that of forest land was the lowest.
- (4)
- Land desertification in Xinjiang is a serious problem: there has been a recent decrease in the degree of desertification. The extremely severe desertification area was consistent with the high-value AOD area. The degree of desertification is serious in inland lakes, such as Ebinur Lake, the middle and lower reaches of oasis rivers, and the desert oasis transition zone, which is an important aerosol source. Desertification has increased the concentration of dust aerosols. Therefore, Central Asia should focus on desertification and rationally utilise land and water resources to effectively control aerosol pollution.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Intergovernmental Panel on Climate Change (IPCC). The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Available online: http://www.climatechange2013.org (accessed on 1 October 2021).
- Che, H.; Zhang, X.; Alfraro, S.; Chatenet, B.; Gomes, L.; Zhao, J. Aerosol optical properties and its radiative forcing over Yulin, China in 2001 and 2002. Adv. Atmos. Sci. 2009, 26, 564–576. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R.; Lacis, A.; Oinas, V. Global warming in the twenty-first century: An alternative scenario. Proc. Natl. Acad. Sci. USA 2000, 97, 9875–9880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Zha, Y.; Zhang, J.; Gao, J. Aerosol indices derived from MODIS data for indicating aerosol-induced air pollution. Remote Sens. 2014, 6, 1587–1604. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.-M.; Klein, P.M.; Xue, M.; Zhang, F.; Doughty, D.C.; Forkel, R.; Joseph, E.; Fuentes, J.D. Impact of the vertical mixing induced by low-level jets on boundary layer ozone concentration. Atmos. Environ. 2013, 70, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, U. Aerosol effects on clouds and climate. Space Sci. Rev. 2007, 125, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Zhang, M.; Kou, X.; Tian, X.; Ma, X. A regional carbon data assimilation system and its preliminary evaluation in East Asia. Atmos. Chem. Phys. 2015, 15, 1087–1104. [Google Scholar] [CrossRef] [Green Version]
- Koffi, B.; Schulz, M.; Bréon, F.M.; Dentener, F.; Steensen, B.M.; Griesfeller, J.; Winker, D.; Balkanski, Y.; Bauer, S.E.; Bellouin, N.; et al. Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results. J. Geophys. Res. Atmos. 2016, 121, 7254–7283. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Herman, J.R.; Torres, O.; Holben, B.N.; Tanre, D.; Eck, T.F.; Smirnov, A.; Chatenet, B.; Lavenu, F. Comparisons of the TOMS aerosol index with Sun-photometer aerosol optical thickness: Results and applications. J. Geophys. Res. Atmos. 1999, 104, 6269–6279. [Google Scholar] [CrossRef]
- Hsu, N.C.; Lee, J.; Sayer, A.M.; Carletta, N.; Chen, S.-H.; Tucker, C.J.; Holben, B.N.; Tsay, S.-C. Retrieving near-global aerosol loading over land and ocean from AVHRR. J. Geophys. Res. Atmos. 2017, 122, 9968–9989. [Google Scholar] [CrossRef] [Green Version]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.-J.; Holben, B.N.; Zhang, J. Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS. Atmos. Meas. Tech. 2012, 5, 1761–1778. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, Z.; Guo, J.; Zhao, C.; Cribb, M. The climate impact of aerosols on the lightning flash rate: Is it detectable from long-term measurements? Atmos. Chem. Phys. 2018, 18, 12797–12816. [Google Scholar] [CrossRef] [Green Version]
- Garay, M.J.; Witek, M.L.; Kahn, R.A.; Seidel, F.C.; Limbacher, J.A.; Bull, M.A.; Diner, D.J.; Hansen, E.G.; Kalashnikova, O.V.; Lee, H.; et al. Introducing the 4.4 km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product. Atmos. Meas. Tech. 2020, 13, 593–628. [Google Scholar] [CrossRef] [Green Version]
- Sayer, A.M.; Hsu, N.C.; Lee, J.; Kim, W.V.; Dutcher, S.T. Validation, Stability, and Consistency of MODIS Collection 6 1 and VIIRS Version 1 Deep blue aerosol data over land. J. Geophys. Res. Atmos. 2019, 124, 4658–4688. [Google Scholar] [CrossRef]
- Rupakheti, D.; Kang, S.; Bilal, M.; Gong, J.; Xia, X.; Cong, Z. Aerosol optical depth climatology over Central Asian countries based on Aqua-MODIS Collection 6.1 data: Aerosol variations and sources. Atmos. Environ. 2019, 207, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Chudnovsky, A.; Tang, C.; Lyapustin, A.; Wang, Y.; Schwartz, J.; Koutrakis, P. A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions. Atmos. Chem. Phys. 2013, 13, 10907–10917. [Google Scholar] [CrossRef] [Green Version]
- Chudnovsky, A.A.; Kostinski, A.; Lyapustin, A.; Koutrakis, P. Spatial scales of pollution from variable resolution satellite imaging. Environ. Pollut. 2013, 172, 131–138. [Google Scholar] [CrossRef]
- Rogozovsky, I.; Ansmann, A.; Althausen, D.; Heese, B.; Engelmann, R.; Hofer, J.; Baars, H.; Schechner, Y.; Lyapustin, A.; Chudnovsky, A. Impact of aerosol layering, complex aerosol mixing, and cloud coverage on high-resolution MAIAC aerosol optical depth measurements: Fusion of lidar, AERONET, satellite, and ground-based measurements. Atmos. Environ. 2021, 247, 118163. [Google Scholar] [CrossRef]
- Chen, X.; Ding, J.; Liu, J.; Wang, J.; Ge, X.; Wang, R.; Zuo, H. Validation and comparison of high-resolution MAIAC aerosol products over Central Asia. Atmos. Environ. 2021, 251, 118273. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Zheng, Y.; Wang, Y.; Zhang, L.; Zhao, H.; Li, L.; Zhong, J.; Yao, W.; Zhang, X. Seasonal variability and trends in global type-segregated aerosol optical depth as revealed by MISR satellite observations. Sci. Total Environ. 2021, 787, 147543. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, Q.; Qian, Y.; Ji, Z.; Li, C.; Cong, Z.; Zhang, Y.; Guo, J.; Du, W.; Huang, J.; et al. Linking atmospheric pollution to cryospheric change in the Third Pole region: Current progress and future prospects. Natl Sci. Rev. 2019, 6, 796–809. [Google Scholar] [CrossRef]
- Shen, H.; Abuduwaili, J.; Ma, L.; Samat, A. Remote sensing-based land surface change identification and prediction in the Aral Sea bed, Central Asia. Int. J. Environ. Sci. Technol. 2019, 16, 2031–2046. [Google Scholar] [CrossRef]
- Gaybullaev, B.; Chen, S.-C.; Kuo, Y.-M. Large-scale desiccation of the Aral Sea due to over-exploitation after 1960. J. Mt. Sci. 2012, 9, 538–546. [Google Scholar] [CrossRef]
- Rupakheti, D.; Rupakheti, M.; Yin, X.; Hofer, J.; Rai, M.; Hu, Y.; Abdullaev, S.F.; Kang, S. Modifications in aerosol physical, optical and radiative properties during heavy aerosol events over Dushanbe, Central Asia. Geosci. Front. 2021, 12, 101251. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Y.; Gan, Z.; Han, Y.; Li, J.; Huang, J. Assessment of dominating aerosol properties and their long-term trend in the Pan-Third Pole region: A study with 10-year multi-sensor measurements. Atmos. Environ. 2020, 239, 117738. [Google Scholar] [CrossRef]
- Hofer, J.; Ansmann, A.; Althausen, D.; Engelmann, R.; Baars, H.; Abdullaev, S.F.; Makhmudov, A.N. Long-term profiling of aerosol light extinction, particle mass, cloud condensation nuclei, and ice-nucleating particle concentration over Dushanbe, Tajikistan, in Central Asia. Atmos. Chem. Phys. 2020, 20, 4695–4711. [Google Scholar] [CrossRef] [Green Version]
- Floutsi, A.A.; Korras-Carraca, M.; Matsoukas, C.; Biskos, G. The regime of aerosol optical depth over Central Asia based on MODIS Aqua Deep Blue data. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 12–17 April 2015; p. 13428. [Google Scholar]
- Micklin, P. The Aral Sea disaster. Annu. Rev. Earth Planet. Sci. 2007, 35, 47–72. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.B.; Sverdlik, L.G.; Imashev, S.A.; Solomon, P.A.; Lantz, J.; Schauer, J.J.; Shafer, M.M.; Artamonova, M.S.; Carmichael, G. Empirical relationship between particulate matter and aerosol optical depth over Northern Tien-shan, Central Asia. Air Qual. Atmos. Health 2013, 6, 385–396. [Google Scholar] [CrossRef]
- Ma, X.; Ding, Y.; Shi, H.; Yan, W.; Dou, X.; Ochege, F.U.; Luo, G.; Zhao, C. Spatiotemporal variations in aerosol optical depth and associated risks for populations in the arid region of Central Asia. Sci. Total Environ. 2021, 816, 151558. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, Y.N.; Chub, V.E.; Subbotina, O.I.; Tolkacheva, G.A.; Toryannikova, R.V. Review of the scientific and environmental issues of the Aral Sea basin. In The Aral Sea Basin; Springer: Berlin/Heidelberg, Germany, 1996; pp. 9–21. [Google Scholar] [CrossRef]
- Hofer, J.; Althausen, D.; Abdullaev, S.F.; Nazarov, B.I.; Makhmudov, A.N.; Baars, H.; Engelmann, R.; Ansmann, A. Aerosol layer heights above Tajikistan during the CADEX campaign. E3S Web Conf. 2019, 99, 2009. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, F.; Yang, S.; Xia, N.; Ariken, M. Exploring the spatial-temporal characteristics of the aerosol optical depth (AOD) in Central Asia based on the moderate resolution imaging spectroradiometer (MODIS). Environ. Monit. Assess. 2020, 192, 383. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.-J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Superczynski, S.D.; Kondragunta, S.; Lyapustin, A.I. Evaluation of the multi-angleimplementation of atmospheric correction (MAIAC) aerosol algorithm through intercomparison with VIIRS aerosol products and AERONET. J. Geophys. Res. Atmos. 2017, 122, 3005–3022. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K.; et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Buchard, V.; Randles, C.A.; da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef]
- Che, H.; Gui, K.; Xia, X.; Wang, Y.; Holben, B.N.; Goloub, P.; Cuevas-Agullo, E.; Wang, H.; Zheng, Y.; Zhao, H.; et al. Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth. Atmos. Chem. Phys. 2019, 19, 10497–10523. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Zhang, S.; Gao, C.; Yan, Y.; Bao, J.; Su, L.; Liu, M.; Peng, N.; Liu, M. A long-term analysis of atmospheric black carbon MERRA-2 concentration over China during 1980–2019. Atmos. Environ. 2021, 264, 118662. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosolcharacterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Lei, J.; Li, S. Development of a multiscale discretization method for the geographical detector model. Int. J. Geogr. Inf. Sci. 2021, 35, 1650–1675. [Google Scholar] [CrossRef]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. RemoteSens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Martins, V.S.; Lyapustin, A.; Carvalho, L.A.S.; Barbosa, C.C.F.; Novo, E.M.L.M. Validation of high-resolution MAIAC aerosol product over South America. J. Geophys. Res. Atmos. 2017, 122, 7537–7559. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, W.; Fan, M.; Wei, J.; Tan, Y.; Wang, Q. Evaluation of MAIAC aerosol retrievals over China. Atmos. Environ. 2019, 202, 8–16. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Matto, S.; Ichoku, C.; Kahn, R.A.; Eck, T.F. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef] [Green Version]
- Kang, N.; Kumar, K.R.; Hu, K.; Yu, X.; Yin, Y. Long-term (2002–2014) evolutionand trend in Collection 5.1 Level-2 aerosol products derived from the MODIS andMISR sensors over the Chinese Yangtze River Delta. Atmos. Res. 2016, 181, 29–43. [Google Scholar] [CrossRef]
- Xi, X.; Sokolik, I.N. Seasonal dynamics of threshold friction velocity and dust emission in Central Asia. J. Geophys. Res. Atmos. 2015, 120, 1536–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.; Yang, X. Sedimentological and Geochemical Composition of Aeolian Sediments in the Taklamakan Desert: Implications for Provenance and Sediment Supply Mechanisms. J. Geophys. Res. Earth Surf. 2019, 124, 1217–1237. [Google Scholar] [CrossRef]
- Han, T.; Pan, X.; Wang, X. Evaluating and improving the sand storm numerical simulation performance in Northwestern China using WRF-Chem and remote sensing soil moisture data. Atmos. Res. 2021, 251, 105411. [Google Scholar] [CrossRef]
- Xi, X.; Sokolik, I.N. Dust interannual variability and trend in Central Asia from 2000 to 2014 and their climatic linkages. J. Geophys. Res. Atmos. 2015, 120, 12–75. [Google Scholar] [CrossRef] [Green Version]
- Sokolik, I.N.; Darmenova, K.; Huang, J.; Kalashnikova, O.; Kurosaki, Y.; Xi, X. Examining changes in land cover and land use, regional climate and dust in dryland East Asia and their linkages within the Earth system. In Dryland East Asia (DEA): Land Dynamics Amid Social and Climate Change; Chen, J., Wan, S., Henebry, G., Qi, J., Gutman, G., Sun, G., Kappas, M., Eds.; DE GRUYTER: Berlin, Germany, 2013; pp. 185–213. [Google Scholar]
- Orlovsky, N.; Orlovsky, L. White sand storms in Central Asia. In Global Alarm: Dust and Sand Storms from the World’s Drylands; Yang, Y., Squires, V., Lu, Q., Eds.; UNCCD: Bangkok, Thailand, 2002; pp. 169–201. [Google Scholar]
- De Meij, A.; Bossioli, E.; Penard, C.; Vinuesa, J.F.; Price, I. The effect of SRTM and Corine Land Cover data on calculated gas and PM10 concentrations in WRF-Chem. Atmos. Environ. 2015, 101, 177–193. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50, RG3005. [Google Scholar] [CrossRef]
- Yang, X. Desertification and land use in arid areas of Central Asia. Quat. Res. 1998, 2, 119–127. [Google Scholar]
- Zhang, F.; Yushanjiang, A.; Jing, Y. Assessing and predicting changes of the ecosystem service values based on land use/cover change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Sci. Total Environ. 2019, 656, 1133–1144. [Google Scholar] [CrossRef]
- Zeng, H.; Wu, B.; Zhu, W.; Zhang, N. A trade-off method between environment restoration and human water consumption: A case study in Ebinur Lake. J. Clean. Prod. 2019, 217, 732–741. [Google Scholar] [CrossRef]
- Gao, W.; Yuan, Y.; Liu, Z.; Wei, W. Analysis of dust sources and dust aerosol release conditions in Xinjiang. China Desert 2008, 5, 968–973. [Google Scholar]
- Jugder, D.; Shinoda, M.; Sugimoto, N.; Matsui, I.; Nishikawa, M.; Park, S.-U.; Chun, Y.-S.; Park, M.-S. Spatial and temporal variations of dust concentrations in the Gobi Desert of Mongolia. Glob. Planet. Chang. 2011, 78, 14–22. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Li, S.; Lei, J. Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020. Ecol. Indic. 2021, 129, 107908. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Liu, Z.; Wang, R. Response of desertification to climate change and Control Countermeasures in Xinjiang. Bull. Soil Water Conserv. 2014, 34, 264–268. [Google Scholar] [CrossRef]
- Chi, M. Remote Sensing Analysis of Land Use Types in Dust Source Areas of East Asia. Master’s Thesis, Inner Mongolia Normal University, Hohhot, China, 2020. [Google Scholar] [CrossRef]
- Alizade Govarchin Ghale, Y.; Tayanc, M.; Unal, A. Dried bottom of Urmia Lake as a new source of dust in the northwestern Iran: Understanding the impacts on local and regional air quality. Atmos. Environ. 2021, 262, 118635. [Google Scholar] [CrossRef]
- Arkian, F.; Nicholson, S.E. Long-term variations of aerosol optical depth and aerosol radiative forcing over Iran based on satellite and AERONET data. Environ. Monit. Assess. 2018, 190, 1. [Google Scholar] [CrossRef]
- Chen, W.; Ding, J.; Tan, J.; Zhang, J.; Liu, B. Analysis of desertification change in Central Asia from 2000 to 2015 based on DPM-SPOT. Geogr. Arid Areas 2018, 41, 119–126. [Google Scholar] [CrossRef]
Criterion | Interaction Relation |
---|---|
q(X1∩X2) < Min(q(X1), q(X2)) | Nonlinear weakening |
Min(q(X1), q(X1)) < q(X1∩X1) < Max(q(X1), q(X1)) | Single-factor nonlinear weakening |
q(X1∩X1) > Max(q(X1), q(X1)) | Two-factor enhancement |
q(X1∩X1) = q(X1) + q(X1) | Independent |
q(X1∩X1) > q(X1) + q(X1) | Nonlinear enhancement |
Relative Humidity | NDVI | Surface Soil Moisture | Precipitation | Temperature | Wind Speed | |
---|---|---|---|---|---|---|
Relative humidity | 0.4611 | |||||
NDVI | 0.5021 | 0.1850 | ||||
Soil moisture | 0.5247 | 0.3264 | 0.2500 | |||
Precipitation | 0.5229 | 0.5737 | 0.5216 | 0.4539 | ||
Temperature | 0.6315 | 0.5852 | 0.5829 | 0.5985 | 0.3722 | |
Wind speed | 0.4857 | 0.2363 | 0.3038 | 0.4722 | 0.4119 | 0.0350 |
2001 | 2007 | 2013 | 2019 | AOD | |||||
---|---|---|---|---|---|---|---|---|---|
dTi | Ci | dTi | Ci | dTi | Ci | dTi | Ci | ||
Woodland | 0.73 | 0.0028 | 0.74 | 0.0025 | 0.67 | 0.0023 | 0.76 | 0.0060 | 0.1046 |
Grassland | 0.77 | 0.4029 | 0.81 | 0.4851 | 0.80 | 0.4699 | 0.84 | 0.5133 | 0.1169 |
Construction land | 0.96 | 0.0032 | 1.00 | 0.0032 | 1.04 | 0.0033 | 1.01 | 0.0037 | 0.1457 |
Farmland | 0.95 | 0.1002 | 0.98 | 0.0907 | 1.01 | 0.096 | 1.01 | 0.0524 | 0.1431 |
Water | 1.05 | 0.3000 | 1.19 | 0.0300 | 0.92 | 0.0219 | 1.34 | 0.0425 | 0.1627 |
Unutilised land | 1.36 | 0.4663 | 1.40 | 0.3911 | 1.43 | 0.4058 | 1.31 | 0.3876 | 0.1994 |
Non-Desertification | Light Desertification | Moderate Desertification | Severe Desertification | Extremely Severe Desertification | |
---|---|---|---|---|---|
2001 | 8.52 | 2.57 | 3.04 | 12.60 | 73.27 |
2007 | 9.37 | 2.65 | 3.12 | 13.93 | 70.93 |
2013 | 12.16 | 2.77 | 3.36 | 19.38 | 62.33 |
2020 | 11.89 | 2.74 | 3.37 | 18.56 | 63.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Gao, X.; Meng, X.; Lei, J.; Halik, Ü. Characteristics of the Spatio-Temporal Dynamics of Aerosols in Central Asia and Their Influencing Factors. Remote Sens. 2022, 14, 2684. https://doi.org/10.3390/rs14112684
Zhou Y, Gao X, Meng X, Lei J, Halik Ü. Characteristics of the Spatio-Temporal Dynamics of Aerosols in Central Asia and Their Influencing Factors. Remote Sensing. 2022; 14(11):2684. https://doi.org/10.3390/rs14112684
Chicago/Turabian StyleZhou, Yongchao, Xin Gao, Xiaoyu Meng, Jiaqiang Lei, and Ümüt Halik. 2022. "Characteristics of the Spatio-Temporal Dynamics of Aerosols in Central Asia and Their Influencing Factors" Remote Sensing 14, no. 11: 2684. https://doi.org/10.3390/rs14112684
APA StyleZhou, Y., Gao, X., Meng, X., Lei, J., & Halik, Ü. (2022). Characteristics of the Spatio-Temporal Dynamics of Aerosols in Central Asia and Their Influencing Factors. Remote Sensing, 14(11), 2684. https://doi.org/10.3390/rs14112684