Monitoring Raptor Movements with Satellite Telemetry and Avian Radar Systems: An Evaluation for Synchronicity
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Overall Satellite Telemetry and Radar Track Syncronization
3.2. Performance of the AR1 Radar
3.3. Performance of the AR2-1 Radar
3.4. Performance of the AR2-2 Radar
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diehl, R.H. The airspace is habitat. Trends Ecol. Evol. 2013, 28, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Womack, A.M.; Bohannan, B.J.M.; Green, J.L. Biodiversity and biogeography of the atmosphere. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3645–3653. [Google Scholar] [CrossRef] [PubMed]
- Lambertucci, S.A.; Shepard, E.L.C.; Wilson, R.P. Human-wildlife conflicts in a crowded airspace. Science 2015, 348, 502–504. [Google Scholar] [CrossRef] [PubMed]
- Davy, C.M.; Ford, A.T.; Fraser, K.C. Aeroconservation for the fragmented skies. Conserv. Lett. 2017, 10, 773–780. [Google Scholar] [CrossRef]
- Kunz, T.H.; Gauthreaux, S.A., Jr.; Hristov, N.I.; Horn, J.W.; Jones, G.; Kalko, E.K.V.; Larkin, R.P.; McCracken, G.F.; Swartz, S.M.; Srygley, R.B.; et al. Aeroecology: Probing and modeling the aerospace. Integr. Comp. Biol. 2008, 48, 1–11. [Google Scholar] [CrossRef]
- Fancy, S.G.; Pank, L.F.; Whitten, K.R.; Regelin, W.L. Seasonal movements of caribou in arctic Alaska as determined by satellite. Can. J. Zool. 1989, 67, 644–650. [Google Scholar] [CrossRef]
- Jouventin, P.; Weimerskirsch, H. Satellite tracking of wandering albatross. Nature 1990, 343, 746–748. [Google Scholar] [CrossRef]
- Andrews, R.D.; Pitman, R.L.; Ballance, L.T. Satellite tracking reveals distinct movement patterns of Type B and Type C killer whales in the southern Ross Sea, Antarctica. Polar Biol. 2008, 31, 1461–1468. [Google Scholar] [CrossRef]
- Martell, M.S.; Bierregaard, R.O., Jr.; Washburn, B.E.; Elliott, J.E.; Henny, C.J.; Kennedy, R.; MacLeod, I. The spring migration of adult North American Ospreys. J. Raptor Res. 2014, 48, 309–324. [Google Scholar] [CrossRef]
- Washburn, B.E.; Martell, M.S.; Bierregaard, R.O., Jr.; Henny, C.J.; Dorr, B.S.; Olexa, T.J. Wintering ecology of adult North American Ospreys. J. Raptor Res. 2014, 48, 325–333. [Google Scholar] [CrossRef][Green Version]
- Rutledge, M.E.; Moorman, C.E.; Washburn, B.E.; DePerno, C.S. Analyzing resident Canada goose movements to reduce the risk of goose-aircraft collisions at suburban airports. J. Wildl. Manag. 2015, 79, 1185–1191. [Google Scholar] [CrossRef]
- Dorak, B.E.; Ward, M.P.; Eichholz, M.W.; Washburn, B.E.; Lyons, T.P.; Hagy, H.M. Survival and habitat selection of Canada geese during autumn and winter in metropolitan Chicago, USA. Condor Ornithol. Appl. 2017, 119, 787–799. [Google Scholar] [CrossRef]
- Holland, A.E.; Byrne, M.E.; Bryan, A.L.; DeVault, T.L.; Rhoades, O.E., Jr.; Beasley, J.C. Fine-scale assessment of home ranges and activity patterns for resident black vultures (Coragyps airatus) and turkey vultures (Cathartes aura). PLoS ONE 2017, 12, e0179819. [Google Scholar] [CrossRef] [PubMed]
- Lack, D.; Varley, G.C. Detection of birds by radar. Nature 1945, 156, 446. [Google Scholar] [CrossRef]
- Eastwood, E. Radar Ornithology; Meuthuen Press: London, UK, 1967.
- Cooper, B.A.; Day, R.H.; Ritchie, R.J.; Cranor, C.L. An improved marine radar system for studies of bird migration. J. Field Ornithol. 1991, 62, 367–377. [Google Scholar]
- Deng, J.; Frederick, P. Nocturnal flight behavior of waterbirds in close proximity to a transmission power line in the Florida Everglades. Waterbirds 2001, 24, 419–424. [Google Scholar] [CrossRef]
- Hamer, T.E.; Cooper, B.A.; Ralph, C.J. Use of radar to study the movements of Marbled Murrelets at inland sites. Northwest. Nat. 1995, 76, 73–78. [Google Scholar] [CrossRef]
- Bertram, D.F.; Cowen, L.; Burger, A.E. Use of radar for monitoring colonial burrow-nesting seabirds. J. Field Ornithol. 1999, 70, 145–157. [Google Scholar]
- Gauthreaux, S.A., Jr.; Schmidt, P.M. Application of radar technology to monitor hazardous birds at airports. In Wildlife in Airport Environments: Preventing Animal–Aircraft Collisions through Science-Based Management; DeVault, T.L., Blackwell, B.F., Belant, J.L., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2013; pp. 141–151. [Google Scholar]
- Beason, R.C.; Nohara, T.J.; Weber, P. Beware the Boojum: Caveats and strengths of avian radar. Hum.-Wildl. Interact. 2013, 7, 16–46. [Google Scholar]
- Harmata, A.R.; Podruzny, K.M.; Zelenak, J.L.; Morrison, M.L. Using marine surveillance radar to study bird movements and impact assessment. Wildl. Soc. Bull. 1999, 24, 44–52. [Google Scholar]
- Desholm, M.; Kahler, J. Avian collision risk at an offshore wind farm. Biol. Lett. 2005, 1, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Krijgsveld, K.L.; Akershock, K.; Schenk, F.; Djik, F.; Dirksen, S. Collision risk of birds with modern large wind turbines. Ardea 2009, 97, 357–366. [Google Scholar] [CrossRef]
- May, R.; Steinheim, Y.; Kvaløy, R.; Vang, R.; Hannssen, F. Performance test of an off-the-shelf automated radar tracking system. Ecol. Evol. 2017, 7, 5930–5938. [Google Scholar] [CrossRef] [PubMed]
- van Belle, J.V.; Shamoun-Baranes, J.; Loon, E.V.; Bouten, W. An operational model predicting autumn bird migration intensities for flight safety. J. Appl. Ecol. 2007, 44, 864–874. [Google Scholar] [CrossRef]
- Coates, P.S.; Casazza, M.L.; Halstead, B.J.; Fleskes, J.P.; Laughlin, J.A. Using avian radar to examine relationships among avian activity, bird strikes, and meteorological factors. Hum.-Wildl. Interact. 2011, 5, 249–268. [Google Scholar]
- Gerringer, M.B.; Lima, S.L.; DeVault, T.L. Evaluation of an avian radar system in a Midwestern landscape. Wildl. Soc. Bull. 2016, 40, 150–159. [Google Scholar] [CrossRef]
- Phillips, A.C.; Majumdar, S.; Washburn, B.E.; Mayer, D.; Swearingin, R.; Herricks, E.; Guerrant, T.L.; Beckerman, S.F.; Pullins, C.K. Efficacy of avian radar systems for tracking birds on the airfield of a large international airport. Wildl. Soc. Bull. 2018, 42, 476–477. [Google Scholar] [CrossRef]
- Robinson, W.D.; Bowlin, M.S.; Bisson, I.; Shamoun-Barnes, J.; Thorup, K.; Diehl, R.H.; Kunz, T.H.; Mabey, S.; Winkler, D.W. Integrating concepts and technologies to advance the study of bird migration. Front. Ecol. Environ. 2010, 8, 354–361. [Google Scholar] [CrossRef]
- Bridge, E.S.; Thorup, K.; Bowlin, M.S.; Chilson, P.B.; Diehl, R.H.; Fleron, R.W.; Harti, P.; Kays, R.; Kelly, J.F.; Robinson, W.D.; et al. Technology on the move: Recent and forthcoming innovations for tracking migratory birds. Bioscience 2011, 61, 698. [Google Scholar] [CrossRef]
- Nilsson, C.; Dokter, A.; Schmid, B.; Scacco, M.; Verlinden, L.; Bäckman, J.; Haase, G.; Dell’Omo, G.; Chapman, J.W.; Leijnse, H.; et al. Field validation of radar systems for monitoring bird migration. J. Appl. Ecol. 2018, 55, 2552–2564. [Google Scholar] [CrossRef]
- Beason, R.C.; Humphrey, J.S.; Meyers, N.E.; Avery, M.L. Synchronous monitoring of vulture movements with satellite telemetry and avian radar. J. Zool. 2010, 282, 157–162. [Google Scholar] [CrossRef]
- Brand, M.; Key, G.; Herricks, E.; King, R.; Nohara, J.T.; Gauthreaux, S., Jr.; Begier, M.; Bowser, C.; Beason, R.; Swift, J.; et al. Integration and Validation of Avian Radars (IVAR). Environmental Security Technology Certification Program Final Report for Project SI–2000723; SPAWAR Systems Center-Pacific: San Diego, CA, USA, 2011. [Google Scholar]
- Dokter, A.M.; Baptist, M.J.; Ens, B.J.; Krijgsveld, K.L.; van Loon, E. Bird radar validation in the field by time-referenced line-transect surveys. PLoS ONE 2013, 8, e74129. [Google Scholar] [CrossRef] [PubMed]
- Chicago Department of Aviation. Chicago O’Hare International Airport Wildlife Hazard Management Plan; City of Chicago, Department of Aviation, Chicago O’Hare International Airport: Chicago, IL, USA, 2014.
- McMillen, D.P. Airport expansions and property values: The case of Chicago’s O’Hare Airport. J. Urban Econ. 2004, 55, 627–640. [Google Scholar] [CrossRef]
- Airports Council International. Passenger Traffic 2010 Final; Airports Council International: Montréal, QC, Canada, 2011; Available online: http://www.aci.aero/Data’Centre/Annual-Traffic-Data/Passengers/2010-final (accessed on 2 April 2018).
- Calsyn, D.E.; Reinhardt, L.P.; Ryan, K.A.; Wollenweber, J.L. Soil Survey of Cook County, Illinois; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2012.
- Bloom, P.H.; Clark, W.S.; Kidd, J.W. Capture techniques. In Raptor Research and Management Techniques; Bird, D.M., Bildstein, K.L., Eds.; Hancock House Publishers: Blaine, WA, USA, 2007; pp. 221–236. [Google Scholar]
- Preston, C.R.; Beane, R.D. Account 52: Red-tailed hawk (Buteo jamaicensis). In The Birds of North America; Poole, A., Gill, F., Eds.; The Academy of Natural Sciences: Philadelphia, PA, USA; The American Ornithologists’ Union: Washington, DC, USA, 2009.jamaicensis). In The Birds of North America; Poole, A., Gill, F., Eds.; The American Ornithologists’ Union: Washington, DC, USA; The Academy of Natural Sciences: Philadelphia, PA, USA, 2009. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: http://www.R-project.org/ (accessed on 8 March 2021).
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Mazerolle, M.J. AICcmodaveg: Model Selection and Mulitmodel Inference Based on (Q)AIC(c). R Package Version 2.0-3. 2015. Available online: http://CRAN.R-project.org/package=AICcmodavg/ (accessed on 12 June 2018).
- Symonds, M.R.E.; Moussaili, A. A brief guide to model selection, multimodel inference, and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 2011, 65, 13–21. [Google Scholar] [CrossRef]
- Fox, J. Effects displays in R for generalized linear models. J. Stat. Softw. 2003, 8, 1–27. [Google Scholar] [CrossRef]
- Rosenberg, K.V.; Kennedy, J.A.; Dettmers, R.; Ford, R.P.; Reynolds, D.; Alexander, J.D.; Beardmore, C.J.; Blancher, P.J.; Bogart, R.E.; Butcher, G.S.; et al. Partners in Flight Landbird Conservation Plan: 2016 Revision for Canada and Continental United States; Partners in Flight Science Committee: Washington, DC, USA, 2016. [Google Scholar]
- Dolbeer, R.A.; Wright, S.E. Safety management systems: How useful will the FAA National Wildlife Strike Database be? Hum.–Wildl. Confl. 2009, 3, 167–178. [Google Scholar]
- DeVault, T.L.; Belant, J.L.; Blackwell, B.F.; Seamans, T.W. Interspecific variation in wildlife hazards to aircraft: Implications for airport wildlife management. Wild. Soc. Bull. 2011, 35, 394–402. [Google Scholar] [CrossRef]
- DeVault, T.L.; Blackwell, B.F.; Seamans, T.W.; Begier, M.J.; Kougher, J.D.; Washburn, J.E.; Miller, P.R.; Dolbeer, R.A. Estimating interspecific economic risk of bird strikes with aircraft. Wildl. Soc. Bull. 2018, 42, 94–101. [Google Scholar] [CrossRef]
- Dolbeer, R.A.; Begier, M.J.; Miller, P.R.; Weller, J.R.; Anderson, A.L. Wildlife Strikes to Civilian Aircraft in the United States 1990−2020; Federal Aviation Administration, Wildlife Aircraft Strike Database Serial Report Number 27; Department of Transportation, Federal Aviation Administration, Airport Safety: Washington, DC, USA, 2021.
- Nohara, T.J.; Beason, R.C.; Weber, P. Using radar cross-section to enhance situational awareness tools for airport avian radars. Hum.-Wildl. Interact. 2011, 5, 210–217. [Google Scholar]
- McCann, D.L.; Bell, P.S. Visualizing the aspect-dependent radar cross section of seabirds over a tidal energy test site using a commercial marine radar system. Int. J. Mar. Energy 2017, 17, 56–63. [Google Scholar] [CrossRef]
- Desholm, M.; Fox, A.D.; Beasley, P.D.L.; Kahlert, J. Remote techniques for counting and estimating the number of bird-wind turbine collisions at sea: A review. Ibis 2006, 148, 76–89. [Google Scholar] [CrossRef]
- Plonczkier, P.; Simms, I.C. Radar monitoring of migrating pink-footed geese: Behavioural responses to offshore wind farm development. J. Appl. Ecol. 2012, 49, 1187–1194. [Google Scholar] [CrossRef]
- Urmy, S.S.; Warren, J.D. Quantitative ornithology with a commercial marine radar: Standard-target calibration, target detection and tracking, and measurements of echoes from individuals and flocks. Methods Ecol. Evol. 2017, 8, 800–809. [Google Scholar] [CrossRef]
- Stepanian, P.M.; Chilson, P.B.; Kelly, J.F. An introduction to radar image processing in ecology. Methods Ecol. Evol. 2014, 5, 730–738. [Google Scholar] [CrossRef]
Model | K a | LL b | AICc c | ∆AICc d | wi e | Cumulative AICc Weight |
---|---|---|---|---|---|---|
AR1 radar | ||||||
Distance + Angle | 3 | –156.72 | 319.46 | 0.00 | 0.30 | 0.30 |
Distance + Altitude | 3 | –157.10 | 320.22 | 0.76 | 0.21 | 0.51 |
Distance | 2 | –158.51 | 321.03 | 1.57 | 0.14 | 0.65 |
AR2–1 radar | ||||||
Altitude | 2 | –37.48 | 79.00 | 0.00 | 0.23 | 0.23 |
Distance | 2 | –37.76 | 79.56 | 0.56 | 0.17 | 0.40 |
Altitude + Angle | 3 | –37.44 | 80.97 | 1.97 | 0.09 | 0.49 |
Distance + Altitude | 3 | –37.45 | 80.99 | 1.99 | 0.08 | 0.57 |
AR2–2 radar | ||||||
Angle | 2 | –16.68 | 37.67 | 0.00 | 0.24 | 0.24 |
Angle + Temperature | 3 | –16.20 | 39.03 | 1.35 | 0.12 | 0.36 |
All radars combined | ||||||
Distance + Angle | 3 | –217.57 | 441.14 | 0.00 | 0.30 | 0.30 |
Distance | 2 | –218.86 | 441.73 | 0.58 | 0.22 | 0.52 |
Distance + Altitude + Angle | 4 | –217.22 | 442.47 | 1.32 | 0.15 | 0.68 |
Distance + Altitude | 3 | –218.50 | 443.00 | 1.86 | 0.12 | 0.80 |
Parameter | Estimate | SE | LCL | UCL |
---|---|---|---|---|
AR1 radar unit | ||||
Intercept | –1.56 | 0.70 | –2.93 | –0.19 |
Distance | <–0.001 | <0.001 | <–0.001 | <–0.001 |
AR2–1 radar unit | ||||
Intercept | –2.16 | 0.62 | –3.70 | –0.62 |
Distance | <–0.001 | <0.001 | <–0.001 | <–0.001 |
Altitude | –0.01 | 0.01 | –0.02 | 0.00 |
AR2–2 radar unit | ||||
Intercept | –7.54 | 3.41 | –14.22 | –0.86 |
Angle | 0.85 | 0.53 | –0.19 | 1.90 |
All radars combined | ||||
Intercept | –2.12 | 0.27 | –3.14 | –1.10 |
Distance | <–0.001 | <0.001 | <–0.001 | <–0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Washburn, B.E.; Maher, D.; Beckerman, S.F.; Majumdar, S.; Pullins, C.K.; Guerrant, T.L. Monitoring Raptor Movements with Satellite Telemetry and Avian Radar Systems: An Evaluation for Synchronicity. Remote Sens. 2022, 14, 2658. https://doi.org/10.3390/rs14112658
Washburn BE, Maher D, Beckerman SF, Majumdar S, Pullins CK, Guerrant TL. Monitoring Raptor Movements with Satellite Telemetry and Avian Radar Systems: An Evaluation for Synchronicity. Remote Sensing. 2022; 14(11):2658. https://doi.org/10.3390/rs14112658
Chicago/Turabian StyleWashburn, Brian E., David Maher, Scott F. Beckerman, Siddhartha Majumdar, Craig K. Pullins, and Travis L. Guerrant. 2022. "Monitoring Raptor Movements with Satellite Telemetry and Avian Radar Systems: An Evaluation for Synchronicity" Remote Sensing 14, no. 11: 2658. https://doi.org/10.3390/rs14112658
APA StyleWashburn, B. E., Maher, D., Beckerman, S. F., Majumdar, S., Pullins, C. K., & Guerrant, T. L. (2022). Monitoring Raptor Movements with Satellite Telemetry and Avian Radar Systems: An Evaluation for Synchronicity. Remote Sensing, 14(11), 2658. https://doi.org/10.3390/rs14112658