Evolution Analysis of Ecological Networks Based on Spatial Distribution Data of Land Use Types Monitored by Remote Sensing in Wuhan Urban Agglomeration, China, from 2000 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Methodology
2.2.1. Construction of ENs
- (1)
- Identification of ecological sources
- (2)
- Construction of ecological resistance surface
- (3)
- Extraction of ecological corridors
2.2.2. Evaluation of “Quality–Function–Structure” for ENs
(1) Quality Evaluation of ENs
(2) Functional Evaluation of ENs
(3) Structural Evaluation of ENs
- ①
- Community structure of ENs
- ②
- Backbone structure of ENs
3. Results
3.1. Spatial–Temporal Evolution of ENs
3.2. Quality Evaluation of ENs
3.3. Functional Evaluation of ENs
3.4. Structural Evaluation of ENs
4. Discussion
4.1. Enlightenment from the Evolution of “Quality–Function–Structure” for ENs
4.1.1. Spatial–Temporal Response of Global ENs to Land Development
4.1.2. Spatial–Temporal Response of Local ENs to Land Development
4.2. Protection Strategies of ENs Based on the Coupling of “Quality–Function–Structure”
4.3. Advances, Limitations, and Directions for Future Work
5. Conclusions
- (1)
- Regulating land development activities will be conducive to maintaining the global stability of ENs. Forest fragmentation, transitional urban expansion, and agricultural reclamation were important inducements for the shrinkage of ecological sources. They may also increase the resistance of species migration, which will lead to qualitative change and even fracture of ecological corridors.
- (2)
- Regulating land development activities will be conducive to strengthening the local connectivity of ENs. On the one hand, the antagonism between ecological corridors and land development activities led to ecological quality defects. On the other hand, the topology analysis of complex networks can be used to extract the key components of ENs to avoid being occupied by land development activities. Therefore, it is crucial for ecological connectivity to repair the weak sections of ENs and protect the key ENs.
- (3)
- The coupling “quality–function–structure” provides the possibility for the differential protection of ENs. The key areas to be repaired can be determined through the quality evaluation of ENs, and the priority of construction and protection for ENs may be determined through the coupling of topology and function.
- (4)
- The proposed research framework has strong applicability and potential. Goal 15 (Life on Land) of the Sustainable Development Goals (SDGs) aims to protect, restore, and promote the sustainable use of terrestrial ecosystems [72]. However, in the inevitable high-intensity construction rhythm of the “Anthropocene”, the gradually isolated ecosystems may lead to the loss of human well-being or biological homogenization [73,74]. ENs are effective means to curb the islanding of the ecosystem by maintaining ecological connectivity [6]. The research framework in this study comprehensively considers the quality defects, main functions, and topology of ENs, which can be applied to the research and planning of multi-scale ENs. In the future, the research framework will be further extended to the study of aquatic ecosystems and the effectiveness of protection strategies for ENs. Therefore, we believe that this research framework has strong applicability and potential in the realization of Goal 15 of the SDGs [72].
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Identification of Optimal Area Threshold for Ecological Sources
Appendix B. Calculation Process of Habitat Quality for Terrestrial Ecosystem
Habitats | ||||
---|---|---|---|---|
Town | Rural | Others | ||
Paddy field | 0.7 | 0.5 | 0.4 | 0.3 |
Dryland | 0.6 | 0.5 | 0.4 | 0.3 |
Woodland | 1 | 1 | 0.9 | 0.8 |
Shrub wood | 0.9 | 0.8 | 0.7 | 0.6 |
Sparse woodland | 0.8 | 0.7 | 0.6 | 0.5 |
Other woodland | 0.8 | 0.6 | 0.5 | 0.5 |
High coverage grassland | 0.7 | 0.7 | 0.6 | 0.5 |
Medium coverage grassland | 0.7 | 0.6 | 0.5 | 0.5 |
Low coverage grassland | 0.7 | 0.6 | 0.5 | 0.3 |
Water | 0 | 0.9 | 0.8 | 0.6 |
Unused land | 0.1 | 0.5 | 0.4 | 0.3 |
Town | 0 | 0 | 0 | 0 |
Rural | 0 | 0 | 0 | 0 |
Other construction land | 0 | 0 | 0 | 0 |
Threat | Decay Function | ||
---|---|---|---|
Town | 1 | 10 | exponential |
Rural | 0.6 | 5 | exponential |
Other construction land | 0.5 | 3 | linear |
Appendix C. Verification of Quality Defects for ENs
References
- Li, G.; Fang, C.; Li, Y.; Wang, Z.; Sun, S.; He, S.; Qi, W.; Bao, C.; Ma, H.; Fan, Y.; et al. Global Impacts of Future Urban Expansion on Terrestrial Vertebrate Diversity. Nat. Commun. 2022, 13, 1628. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Xiong, N.; Chen, Y.; Sun, L.; Wang, Y.; An, L. Analysis of Ecological Blockage Pattern in Beijing Important Ecological Function Area, China. Remote Sens. 2022, 14, 1151. [Google Scholar] [CrossRef]
- Mendes, C.B.; Prevedello, J.A. Does Habitat Fragmentation Affect Landscape-Level Temperatures? A Global Analysis. Landsc. Ecol. 2020, 35, 1743–1756. [Google Scholar] [CrossRef]
- Syst, G.I. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Fang, M.; Si, G.; Yu, Q.; Huang, H.; Huang, Y.; Liu, W.; Guo, H. Study on the Relationship between Topological Characteristics of Vegetation Ecospatial Network and Carbon Sequestration Capacity in the Yellow River Basin, China. Remote Sens. 2021, 13, 4926. [Google Scholar] [CrossRef]
- Huang, L.; Wang, J.; Cheng, H. Spatiotemporal Changes in Ecological Network Resilience in the Shandong Peninsula Urban Agglomeration. J. Clean. Prod. 2022, 339, 130681. [Google Scholar] [CrossRef]
- Opdam, P.; Steingröver, E.; van Rooij, S. Ecological Networks: A Spatial Concept for Multi-Actor Planning of Sustainable Landscapes. Landsc. Urban Plan. 2006, 75, 322–332. [Google Scholar] [CrossRef]
- Jongman, R.H.G. Nature Conservation Planning in Europe: Developing Ecological Networks. Landsc. Urban Plan. 1995, 32, 169–183. [Google Scholar] [CrossRef]
- Linden-Ward, B. Greenways for America. Landsc. J. 1992, 11, 196–197. [Google Scholar] [CrossRef]
- Jongman, R.H.G.; Külvik, M.; Kristiansen, I. European Ecological Networks and Greenways. Landsc. Urban Plan. 2004, 68, 305–319. [Google Scholar] [CrossRef]
- Fabos, J.G. Introduction and Overview: The Greenway Movement, Uses and Potentials of Greenways. Landsc. Urban Plan. 1995, 33, 1–13. [Google Scholar] [CrossRef]
- Furberg, D.; Ban, Y.; Mörtberg, U. Monitoring Urban Green Infrastructure Changes and Impact on Habitat Connectivity Using High-Resolution Satellite Data. Remote Sens. 2020, 12, 3072. [Google Scholar] [CrossRef]
- Staccione, A.; Candiago, S.; Mysiak, J. Mapping a Green Infrastructure Network: A Framework for Spatial Connectivity Applied in Northern Italy. Environ. Sci. Policy 2022, 131, 57–67. [Google Scholar] [CrossRef]
- Fan, F.; Wen, X.; Feng, Z.; Gao, Y.; Li, W. Optimizing Urban Ecological Space Based on the Scenario of Ecological Security Patterns: The Case of Central Wuhan, China. Appl. Geogr. 2022, 138, 102619. [Google Scholar] [CrossRef]
- Wang, X.; Wen, Y.; Liu, X.; Wen, D.; Long, Y.; Zhao, P.; Liu, P.; Zhong, J. Protection Effect and Vacancy of the Ecological Protection Redline: A Case Study in Guangdong–Hong Kong–Macao Greater Bay Area, China. Remote Sens. 2021, 13, 5171. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking Ecosystem Services and Circuit Theory to Identify Ecological Security Patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking Ecological Degradation Risk to Identify Ecological Security Patterns in a Rapidly Urbanizing Landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, S.; Dong, J.; Liu, Y.; Meersmans, J.; Li, H.; Wu, J. Applying Ant Colony Algorithm to Identify Ecological Security Patterns in Megacities. Environ. Model. Softw. 2019, 117, 214–222. [Google Scholar] [CrossRef] [Green Version]
- Pierik, M.E.; Dell’Acqua, M.; Confalonieri, R.; Bocchi, S.; Gomarasca, S. Designing Ecological Corridors in a Fragmented Landscape: A Fuzzy Approach to Circuit Connectivity Analysis. Ecol. Indic. 2016, 67, 807–820. [Google Scholar] [CrossRef]
- Puri, M.; Srivathsa, A.; Karanth, K.K.; Patel, I.; Kumar, N.S. Links in a Sink: Interplay between Habitat Structure, Ecological Constraints and Interactions with Humans Can Influence Connectivity Conservation for Tigers in Forest Corridors. Sci. Total Environ. 2022, 809, 151106. [Google Scholar] [CrossRef]
- Dai, L.; Liu, Y.; Luo, X. Integrating the MCR and DOI Models to Construct an Ecological Security Network for the Urban Agglomeration around Poyang Lake, China. Sci. Total Environ. 2021, 754, 141868. [Google Scholar] [CrossRef]
- Fu, B.; Liu, J.; Zhang, J.; Wu, X.; Wang, J. Service Accessibility of Ecological Nodes: An Exploratory Way to Enhance Network Connectivity in a Study Case of Wu’an, China. Ecol. Inform. 2022, 69, 101589. [Google Scholar] [CrossRef]
- Huang, X.; Wang, H.; Shan, L.; Xiao, F. Constructing and Optimizing Urban Ecological Network in the Context of Rapid Urbanization for Improving Landscape Connectivity. Ecol. Indic. 2021, 132, 108319. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Q.; Zhang, L.; Zhong, Q.; Liu, J.; Wang, Z. Identification and Extraction of a Current Urban Ecological Network in Minhang District of Shanghai Based on an Optimization Method. Ecol. Indic. 2022, 136, 108647. [Google Scholar] [CrossRef]
- Huang, L.; Wang, J.; Fang, Y.; Zhai, T.; Cheng, H. An Integrated Approach towards Spatial Identification of Restored and Conserved Priority Areas of Ecological Network for Implementation Planning in Metropolitan Region. Sustain. Cities Soc. 2021, 69, 102865. [Google Scholar] [CrossRef]
- Liang, C.; Zeng, J.; Zhang, R.-C.; Wang, Q.-W. Connecting Urban Area with Rural Hinterland: A Stepwise Ecological Security Network Construction Approach in the Urban–Rural Fringe. Ecol. Indic. 2022, 138, 108794. [Google Scholar] [CrossRef]
- McRae, B.H.; Beier, P. Circuit Theory Predicts Gene Flow in Plant and Animal Populations. Proc. Natl. Acad. Sci. USA 2007, 104, 19885–19890. [Google Scholar] [CrossRef] [Green Version]
- McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using Circuit Theory to Model Connectivity in Ecology, Evolution, and Conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef]
- Hong, W.; Guo, R.; Su, M.; Tang, H.; Chen, L.; Hu, W. Sensitivity Evaluation and Land-Use Control of Urban Ecological Corridors: A Case Study of Shenzhen, China. Land Use Policy 2017, 62, 316–325. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, T.; Gu, X. Healthy Urban Streams: The Ecological Continuity Study of the Suzhou Creek Corridor in Shanghai. Cities 2016, 59, 80–94. [Google Scholar] [CrossRef]
- Morandi, D.T.; de Jesus França, L.C.; Menezes, E.S.; Machado, E.L.M.; da Silva, M.D.; Mucida, D.P. Delimitation of Ecological Corridors between Conservation Units in the Brazilian Cerrado Using a GIS and AHP Approach. Ecol. Indic. 2020, 115, 106440. [Google Scholar] [CrossRef]
- dos Santos, A.R.; Araújo, E.F.; Barros, Q.S.; Fernandes, M.M.; de Moura Fernandes, M.R.; Moreira, T.R.; de Souza, K.B.; da Silva, E.F.; Silva, J.P.M.; Santos, J.S.; et al. Fuzzy Concept Applied in Determining Potential Forest Fragments for Deployment of a Network of Ecological Corridors in the Brazilian Atlantic Forest. Ecol. Indic. 2020, 115, 106423. [Google Scholar] [CrossRef]
- McRae, B.H. Pinchpoint Mapper User Guide; The Nature Conservancy: Seattle, WA, USA, 2012. [Google Scholar]
- McRae, B.H.; Hall, S.A.; Beier, P.; Theobald, D.M. Where to Restore Ecological Connectivity? Detecting Barriers and Quantifying Restoration Benefits. PLoS ONE 2012, 7, e52604. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Du, Y.; Dong, W.; Zeng, Z.; Zhang, L.; Duan, Y.; Hou, X. Smart City Oriented Ecological Corridor Layout of Sanshui River Basin in Arid Area of Loess Plateau. Sustain. Energy Technol. Assess. 2021, 44, 100993. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, J.; Wang, X.; Peng, J. Using Stepping-Stone Theory to Evaluate the Maintenance of Landscape Connectivity under China’s Ecological Control Line Policy. J. Clean. Prod. 2021, 296, 126356. [Google Scholar] [CrossRef]
- Zhao, S.; Ma, Y.; Wang, J.; You, X. Landscape Pattern Analysis and Ecological Network Planning of Tianjin City. Urban For. Urban Green. 2019, 46, 126479. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, X.; Han, B.; Sun, R.; Liang, X.; Li, H.; Zhou, Y. Identification and Optimization of Ecological Network in the Plain Area of the Lower Yangtze River: A Case Study of Jintan District, Changzhou. Acta Ecol. Sin. 2021, 41, 13. [Google Scholar]
- Yu, Q.; Yue, D.; Wang, Y.; Kai, S.; Fang, M.; Ma, H.; Zhang, Q.; Huang, Y. Optimization of Ecological Node Layout and Stability Analysis of Ecological Network in Desert Oasis: A Typical Case Study of Ecological Fragile Zone Located at Deng Kou County (Inner Mongolia). Ecol. Indic. 2018, 84, 304–318. [Google Scholar] [CrossRef]
- Pop, P.C. The Generalized Minimum Spanning Tree Problem: An Overview of Formulations, Solution Procedures and Latest Advances. Eur. J. Oper. Res. 2020, 283, 1–15. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, J. Linking the Minimum Spanning Tree and Edge Betweenness to Understand Arterial Corridors in an Ecological Network. Landsc. Ecol. 2021, 36, 1549–1565. [Google Scholar] [CrossRef]
- Rosvall, M.; Axelsson, D.; Bergstrom, C.T. The Map Equation. Eur. Phys. J. Spec. Top. 2009, 178, 13–23. [Google Scholar] [CrossRef]
- Martin, R.; Bergstrom, C.T. Maps of Random Walks on Complex Networks Reveal Community Structure. Proc. Natl. Acad. Sci. USA 2008, 105, 1118–1123. [Google Scholar] [CrossRef] [Green Version]
- Sevtsuk, A.; Mekonnen, M. Urban Network Analysis: A New Toolbox for Measuring City Form in ArcGIS. Simul. Ser. 2012, 44, 133–145. [Google Scholar]
- Guo, J.; Chen, X.; Zhang, C. Theory and Application of Complex Network Modeling; Science Press: Alexandria, Australia, 2004. [Google Scholar]
- Yang, J.; Zeng, C.; Cheng, Y. Spatial Influence of Ecological Networks on Land Use Intensity. Sci. Total Environ. 2020, 717, 137151. [Google Scholar] [CrossRef] [PubMed]
- Correa Ayram, C.A.; Mendoza, M.E.; Etter, A.; Pérez-Salicrup, D.R. Effect of the Landscape Matrix Condition for Prioritizing Multispecies Connectivity Conservation in a Highly Biodiverse Landscape of Central Mexico. Reg. Environ. Chang. 2019, 19, 149–163. [Google Scholar] [CrossRef]
- Wang, T.; Li, H.; Huang, Y. The Complex Ecological Network’s Resilience of the Wuhan Metropolitan Area. Ecol. Indic. 2021, 130, 108101. [Google Scholar] [CrossRef]
- Dickson, B.G.; Albano, C.M.; McRae, B.H.; Anderson, J.J.; Theobald, D.M.; Zachmann, L.J.; Sisk, T.D.; Dombeck, M.P. Informing Strategic Efforts to Expand and Connect Protected Areas Using a Model of Ecological Flow, with Application to the Western United States. Conserv. Lett. 2017, 10, 564–571. [Google Scholar] [CrossRef]
- Wimberly, M.C.; Narem, D.M.; Bauman, P.J.; Carlson, B.T.; Ahlering, M.A. Grassland Connectivity in Fragmented Agricultural Landscapes of the North-Central United States. Biol. Conserv. 2018, 217, 121–130. [Google Scholar] [CrossRef]
- De Montis, A.; Caschili, S.; Mulas, M.; Modica, G.; Ganciu, A.; Bardi, A.; Ledda, A.; Dessena, L.; Laudari, L.; Fichera, C.R. Urban–Rural Ecological Networks for Landscape Planning. Land Use Policy 2016, 50, 312–327. [Google Scholar] [CrossRef]
- De Montis, A.; Ganciu, A.; Cabras, M.; Bardi, A.; Peddio, V.; Caschili, S.; Massa, P.; Cocco, C.; Mulas, M. Resilient Ecological Networks: A Comparative Approach. Land Use Policy 2019, 89, 104207. [Google Scholar] [CrossRef]
- Simberloff, D.S.; Abele, L.G. Island Biogeography Theory and Conservation Practice. Science 1976, 191, 285–286. [Google Scholar] [CrossRef] [Green Version]
- Soille, P.; Vogt, P. Morphological Segmentation of Binary Patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [Google Scholar] [CrossRef]
- Carlier, J.; Moran, J. Landscape Typology and Ecological Connectivity Assessment to Inform Greenway Design. Sci. Total Environ. 2019, 651, 3241–3252. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Liu, S.; Sun, Y.; An, Y.; Zhao, S.; Liu, Y.; Li, M. Ecological Network Construction of the Heterogeneous Agro-Pastoral Areas in the Upper Yellow River Basin. Agric. Ecosyst. Environ. 2020, 302, 107069. [Google Scholar] [CrossRef]
- Cui, L.; Wang, J.; Sun, L.; Lv, C. Construction and Optimization of Green Space Ecological Networks in Urban Fringe Areas: A Case Study with the Urban Fringe Area of Tongzhou District in Beijing. J. Clean. Prod. 2020, 276, 124266. [Google Scholar] [CrossRef]
- Sharp, R.; Chaplin-kramer, R.; Wood, S.; Guerry, A.; Ricketts, T.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; Vigerstol, K.; et al. InVEST 3.2.0 User’s Guide; The Natural Capital Project, The Nature Conservancy, and World Wildlife Fund; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA, 2015. [Google Scholar]
- Yin, C.; Liu, Y.; Wei, X. Study on the Multi-Scale Relationship between Road Network Centerality and Social Economic Activities Distribution in Wuhan. Hum. Geogr. 2017, 32, 104–112. (In Chinese) [Google Scholar] [CrossRef]
- Wei, B.; Deng, Y. A Cluster-Growing Dimension of Complex Networks: From the View of Node Closeness Centrality. Phys. A Stat. Mech. Its Appl. 2019, 522, 80–87. [Google Scholar] [CrossRef]
- Joo, H.; Kim, H.S.; Kim, S.; Sivakumar, B. Complex Networks and Integrated Centrality Measure to Assess the Importance of Streamflow Stations in a River Basin. J. Hydrol. 2021, 598, 126280. [Google Scholar] [CrossRef]
- Lin, G.; Chen, X.; Liang, Y. The Location of Retail Stores and Street Centrality in Guangzhou, China. Appl. Geogr. 2018, 100, 12–20. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Ma, H.; Du, X.; Huang, J.; Su, W.; Yu, Z.; Xu, C.; Liu, H.; Yin, D.; et al. Evaluation of the Policy-Driven Ecological Network in the Three-North Shelterbelt Region of China. Landsc. Urban Plan. 2022, 218, 104305. [Google Scholar] [CrossRef]
- Gaaff, A.; Reinhard, S. Incorporating the Value of Ecological Networks into Cost–Benefit Analysis to Improve Spatially Explicit Land-Use Planning. Ecol. Econ. 2012, 73, 66–74. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, J.; Hong, Y.; Qian, C.; Guan, Q.; Liang, X.; Dai, L.; Zhang, J. Discovering the Homogeneous Geographic Domain of Human Perceptions from Street View Images. Landsc. Urban Plan. 2021, 212, 104125. [Google Scholar] [CrossRef]
- Xu, J. Graph Theory and Its Application; China University of Science and Technology Press: Hefei, China, 2004. [Google Scholar]
- Patel, N.; Patel, K.M. Enhancement of Minimum Spanning Tree. In Advances in Intelligent Systems and Computing; Springer: Berlin, Germany, 2016. [Google Scholar]
- Prim, R.C. Shortest Connection Networks and Some Generalizations. Bell Syst. Tech. J. 1957, 4, 53–57. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, L.; Zhong, Q.; Zhang, Q.; Ji, Y.; Song, P.; Wang, Q. An Optimized Evaluation Method of an Urban Ecological Network: The Case of the Minhang District of Shanghai. Urban For. Urban Green. 2021, 62, 127158. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y.; He, H.; Chen, F.; Wang, L.; Liu, Y. Diagnosing Degradation Risks of Ecosystem Services in Wuhan, China from the Perspective of Land Development: Identification, Measurement and Regulation. Ecol. Indic. 2022, 136, 108580. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the Spatial Relationship between Ecosystem Services and Urbanization: A Case Study in Wuhan, China. Sci. Total Environ. 2018, 637–638, 780–790. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; Working Paper; eSocialSciences: Navi Mumbai, India, 2015.
- Zhang, S.; Zhang, Q.; Yan, Y.; Han, P.; Liu, Q. Island Biogeography Theory Predicts Plant Species Richness of Remnant Grassland Patches in the Agro-Pastoral Ecotone of Northern China. Basic Appl. Ecol. 2021, 54, 14–22. [Google Scholar] [CrossRef]
- Vergara, P.M.; Pizarro, J.; Castro, S.A. An Island Biogeography Approach for Understanding Changes in Compositional Similarity at Present Scenario of Biotic Homogenization. Ecol. Modell. 2011, 222, 1964–1971. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, X.; Liang, X.; Ren, J.; Han, B.; Liu, J.; Fan, Y.; Zhou, Y. Implications of Land Sparing and Sharing for Maintaining Regional Ecosystem Services: An Empirical Study from a Suitable Area for Agricultural Production in China. Sci. Total Environ. 2022, 820, 153330. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, J.; Dong, J.; Zhang, Z.; Xu, Z.; Meersmans, J. Linking Ecological Background and Demand to Identify Ecological Security Patterns across the Guangdong-Hong Kong-Macao Greater Bay Area in China. Landsc. Ecol. 2021, 36, 2135–2150. [Google Scholar] [CrossRef]
- Vito, M. Segmented: An R Package to Fit Regression Models with Broken-Line Relationships. R News 2008, 3, 343–344. [Google Scholar]
Outflow of Ecological Sources | 2000–2010 | 2010–2020 | ||
---|---|---|---|---|
Area (km2) | Percentage | Area (km2) | Percentage | |
Farmland | 53.53 | 15.69% | 159.86 | 36.39% |
Forest | 192.25 | 56.34% | 190.00 | 43.25% |
Grassland | 12.48 | 3.66% | 9.66 | 2.20% |
Water | 12.32 | 3.61% | 7.33 | 1.67% |
Construction land | 70.48 | 20.65% | 71.85 | 16.36% |
Unused land | 0.18 | 0.05% | 0.60 | 0.14% |
Total | 341.25 | 100.00% | 439.30 | 100.00% |
Inflow of Ecological Sources | 2000–2010 | 2010–2020 | ||
Area (km2) | Percentage | Area (km2) | Percentage | |
Forest | 256.01 | 97.69% | 240.80 | 94.31% |
Grassland | 6.05 | 2.31% | 14.53 | 5.69% |
Total | 262.05 | 100.00% | 255.33 | 100.00% |
Land Use Types | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Area (km2) | Percentage | Area (km2) | Percentage | Area (km2) | Percentage | |
Farmland | 806.16 | 25.43% | 829.11 | 22.92% | 761.83 | 21.84% |
Forest | 2270.18 | 71.60% | 2686.63 | 74.28% | 2627.84 | 75.34% |
Grassland | 59.13 | 1.87% | 61.33 | 1.70% | 57.66 | 1.65% |
Water | 26.81 | 0.85% | 27.92 | 0.77% | 27.23 | 0.78% |
Construction land | 7.98 | 0.25% | 11.88 | 0.33% | 13.33 | 0.38% |
Unused land | 0.18 | 0.01% | 0.21 | 0.01% | 0.10 | 0.00% |
Total | 3170.44 | 100% | 3617.08 | 100% | 3487.99 | 100% |
Land Use Types | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Area (km2) | Percentage | Area (km2) | Percentage | Area (km2) | Percentage | |
Farmland | 421.77 | 83.25% | 414.17 | 78.36% | 330.00 | 74.25% |
Forest | 19.25 | 3.80% | 21.99 | 4.16% | 18.83 | 4.24% |
Grassland | 4.58 | 0.90% | 5.63 | 1.07% | 8.53 | 1.92% |
Water | 9.22 | 1.82% | 9.38 | 1.77% | 9.54 | 2.15% |
Construction land | 51.10 | 10.09% | 76.96 | 14.56% | 77.02 | 17.33% |
Unused land | 0.71 | 0.14% | 0.41 | 0.08% | 0.53 | 0.12% |
Total | 506.63 | 100.00% | 528.54 | 100.00% | 444.45 | 100.00% |
Types | Characteristics | Strategies |
---|---|---|
Ecological barriers | Non-habitat patches hindering ecological flows. |
|
Ecological pinchpoints | Narrow and irreplaceable corridors. |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Liu, Y.; Huang, D.; Liu, Y. Evolution Analysis of Ecological Networks Based on Spatial Distribution Data of Land Use Types Monitored by Remote Sensing in Wuhan Urban Agglomeration, China, from 2000 to 2020. Remote Sens. 2022, 14, 2618. https://doi.org/10.3390/rs14112618
Lu Y, Liu Y, Huang D, Liu Y. Evolution Analysis of Ecological Networks Based on Spatial Distribution Data of Land Use Types Monitored by Remote Sensing in Wuhan Urban Agglomeration, China, from 2000 to 2020. Remote Sensing. 2022; 14(11):2618. https://doi.org/10.3390/rs14112618
Chicago/Turabian StyleLu, Yanchi, Yaolin Liu, Dan Huang, and Yanfang Liu. 2022. "Evolution Analysis of Ecological Networks Based on Spatial Distribution Data of Land Use Types Monitored by Remote Sensing in Wuhan Urban Agglomeration, China, from 2000 to 2020" Remote Sensing 14, no. 11: 2618. https://doi.org/10.3390/rs14112618
APA StyleLu, Y., Liu, Y., Huang, D., & Liu, Y. (2022). Evolution Analysis of Ecological Networks Based on Spatial Distribution Data of Land Use Types Monitored by Remote Sensing in Wuhan Urban Agglomeration, China, from 2000 to 2020. Remote Sensing, 14(11), 2618. https://doi.org/10.3390/rs14112618