Lidar-Derived Aerosol Properties from Ny-Ålesund, Svalbard during the MOSAiC Spring 2020
Abstract
:1. Introduction
2. Instruments, Methods and Data
2.1. Microphysical Retrieval Methodology by Regularization
- Surface-area concentration (first (“fine”) mode, second (“coarse”) mode, total) ();
- Volume concentration (first mode, second mode, total) ();
- Number concentration (first mode, second mode) (cm;
- Effective radius () .
3. Aerosol Properties in Spring 2020
4. Case Studies
4.1. High Backscatter vs. High Lidar Ratio
4.2. Aerosol Properties in the Mechanical Boundary Layer
5. Conclusions
- In 2020, aerosol backscatter below km was found to be much higher than in 2019. Above that altitude, clear conditions with similar aerosol properties prevailed in both years. We found a dominance of small particles with radii below nm. The almost constant aerosol properties above km altitude suggest, if confirmed at other sites, that, in principle, regional climate models might be easily fed with realistic aerosol properties above this altitude for the Arctic;
- Even in the MOSAiC winter with additional meteorologic data, air backtrajectories alone may not be reliable (high and low aerosol for similar air masses from Siberia). Hence, a final proof of why 2020 was more turbid cannot be given;
- Backscatter histograms for 2020 and low altitudes show a bi-modal structure but the average LR and Ångström exponent for those high and low backscatter groups are very similar. Hence, high backscatter means usually “more of the same aerosol”;
- We generally found low aerosol depolarization. The dominance of nearly spherical particles means that Mie theory is justified to connect optical and microphysical aerosol properties;
- We found low to moderate RI (from four case studies only);
- The highest LR was found for a case with high humidity and low refractive index: likely a case of hygroscopic growth. This means that the LR alone, without knowledge of humidity, is not a good indicator of aerosol type in the Arctic;
- Similarly, other cases of high LR were already found in January for days with lower than average backscatter;
- The low depolarization, the low to moderate RI and the possibly hydrophilic behavior is in agreement with ground-based in situ observations showing nss-sulphate and marine aerosol to be the dominant aerosol species in this season:
- There is generally much higher backscatter and more variable aerosol properties below km in altitude. Bi-modal volume distribution functions can occur. We found clear indications that (at least part) of this aerosol variability in the lowest km is connected to elevated temperature inversions or gradients of humidity. This possible modification of aerosol properties over the undisturbed Arctic oceans compared to the local measurements over Svalbard needs more attention in the future.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Ångström Exponent
Appendix B. Backward Trajectories
Appendix C. Error Propagation from Optical to Microphysical Properties
Error Realization | Real (RI) | Imag (RI) | ||||
---|---|---|---|---|---|---|
Exact solution | 1.526 | 0.020 | 0.0799 | 6.16 | 0.8540 | 0.8620 |
high, high | 1.520 | 0.021 | 0.0720 | 7.18 | 0.8553 | 0.8541 |
low, low | 1.538 | 0.020 | 0.1010 | 5.25 | 0.8514 | 0.8703 |
high, low | 1.533 | 0.020 | 0.3529 | 6.27 | 0.84128 | 0.87294 |
low, high | 1.561 | 0.022 | 0.0511 | 6.66 | 0.86155 | 0.8389 |
All low | 1.517 | 0.020 | 0.0865 | 6.30 | 0.8529 | 0.8609 |
All high | 1.529 | 0.020 | 0.0865 | 6.16 | 0.8508 | 0.8585 |
All low, high, low | 1.520 | 0.017 | 0.3991 | 7.14 | 0.8515 | 0.8800 |
All low, low, high | 1.547 | 0.021 | 0.0551 | 7.34 | 0.8585 | 0.8347 |
All high, high, low | 1.537 | 0.021 | 0.2959 | 5.64 | 0.8337 | 0.8678 |
All high, low, high | 1.581 | 0.022 | 0.0505 | 6.35 | 0.8684 | 0.8501 |
Mean value | 1.537 | 0.02 | 0.1482 | 6.40 | 0.8528 | 0.8591 |
Standard deviation | 0.02 | 0.001 | 0.1321 | 0.64 | 0.0093 | 0.014 |
References
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Cohen, J.; Zhang, X.; Francis, J.; Jung, T.; Kwok, R.; Overl, J.; Ballinger, T.J.; Bhatt, U.S.; Chen, H.W.; Coumou, D.; et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Chang. 2020, 10, 20–29. [Google Scholar] [CrossRef]
- Hall, R.J.; Hanna, E.; Chen, L. Winter Arctic Amplification at the synoptic timescale, 1979–2018, its regional variation and response to tropical and extratropical variability. Clim. Dyn. 2021, 56, 457–473. [Google Scholar] [CrossRef]
- Schmale, J.; Zieger, P.; Ekman, A.M. Aerosols in current and future Arctic climate. Nat. Clim. Chang. 2021, 11, 95–105. [Google Scholar] [CrossRef]
- Shupe, M.D.; Rex, M.; Dethloff, K.; Damm, E.; Fong, A.A.; Gradinger, R.; Heuze, C.; Loose, B.; Makarov, A.; Maslowski, W.; et al. Overview of the MOSAiC expedition: Atmosphere. Elem. Sci. Anth. 2022, 10, 00060. [Google Scholar] [CrossRef]
- Engelmann, R.; Ansmann, A.; Ohneiser, K.; Griesche, H.; Radenz, M.; Hofer, J.; Althausen, D.; Dahlke, S.; Maturilli, M.; Veselovskii, I.; et al. UTLS wildfire smoke over the North Pole region, Arctic haze, and aerosol-cloud interaction during MOSAiC 2019/20: An introductory. Atmos. Chem. Phys. Discuss. 2020, 2020, 1–41. [Google Scholar] [CrossRef]
- Dahlke, S.; Maturilli, M. Contribution of Atmospheric Advection to the Amplified Winter Warming in the Arctic North Atlantic Region. Adv. Meteorol. 2017, 2017, 4928620. [Google Scholar] [CrossRef] [Green Version]
- Tunved, P.; Ström, J.; Krejci, R. Arctic aerosol life cycle: Linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard. Atmos. Chem. Phys. 2013, 13, 3643–3660. [Google Scholar] [CrossRef] [Green Version]
- Udisti, R.; Bazzano, A.; Becagli, S.; Bolzacchini, E.; Caiazzo, L.; Cappelletti, D.; Ferrero, L.; Frosini, D.; Giardi, F.; Grotti, M.; et al. Sulfate source apportionment in the Ny-Ålesund (Svalbard Islands) Arctic aerosol. Rend. Fis. Acc. Lincei 2016, 27, 85–94. [Google Scholar] [CrossRef]
- Graßl, S.; Ritter, C. Properties of Arctic Aerosol Based on Sun Photometer Long-Term Measurements in Ny-Ålesund, Svalbard. Remote Sens. 2019, 11, 1362. [Google Scholar] [CrossRef] [Green Version]
- Shibata, T.; Shiraishi, K.; Shiobara, M.; Iwasaki, S.; Takano, T. Seasonal Variations in High Arctic Free Tropospheric Aerosols Over Ny-Ålesund, Svalbard, Observed by Ground-Based Lidar. J. Geophys. Res. Atmos. 2018, 123, 12353–12367. [Google Scholar] [CrossRef]
- Hoffmann, A.; Ritter, C.; Stock, M.; Shiobara, M.; Lampert, A.; Maturilli, M.; Orgis, T.; Neuber, R.; Herber, A. Ground-based lidar measurements from Ny-Ålesund during ASTAR 2007. Atmos. Chem. Phys. 2009, 9, 9059–9081. [Google Scholar] [CrossRef] [Green Version]
- Quinn, P.K.; Shaw, G.; Andrews, E.; Dutton, E.G.; Ruoho-Airola, T.; Gong, S.L. Arctic haze: Current trends and knowledge gaps. Tellus B Chem. Phys. Meteorol. 2007, 59, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Shaw, G.E. The Arctic haze phenomenon. Bull. Am. Meteorol. Soc. 1995, 76, 2403–2414. [Google Scholar] [CrossRef]
- Stohl, A. Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res. Atmos. 2006, 111, 17. [Google Scholar] [CrossRef]
- Warneke, C.; Bahreini, R.; Brioude, J.; Brock, C.; De Gouw, J.; Fahey, D.; Froyd, K.; Holloway, J.; Middlebrook, A.; Miller, L.; et al. Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophys. Res. Lett. 2009, 36, 6. [Google Scholar] [CrossRef] [Green Version]
- Schmeisser, L.; Backman, J.; Ogren, J.A.; Andrews, E.; Asmi, E.; Starkweather, S.; Uttal, T.; Fiebig, M.; Sharma, S.; Eleftheriadis, K.; et al. Seasonality of aerosol optical properties in the Arctic. Atmos. Chem. Phys. 2018, 18, 11599–11622. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, A. Comparative Aerosol Studies Based on Multi-Wavelength Raman LIDAR at Ny-Ålesund, Spitsbergen. Ph.D. Thesis, Universität Potsdam, Potsdam, Germany, 2011. [Google Scholar]
- Ansmann, A.; Wandinger, U.; Riebesell, M.; Weitkamp, C.; Michaelis, W. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt. 1992, 31, 7113–7131. [Google Scholar] [CrossRef]
- Klett, J.D. Lidar inversion with variable backscatter/extinction ratios. Appl. Opt. 1985, 24, 1638–1643. [Google Scholar] [CrossRef]
- Weitkamp, C. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere; Springer Series in Optical Sciences; Springer: New York, NY, USA, 2005; Volume 102. [Google Scholar]
- Behrendt, A.; Nakamura, T. Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature. Opt. Express 2002, 10, 805–817. [Google Scholar] [CrossRef]
- Böckmann, C. Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions. Appl. Opt. 2001, 40, 1329–1342. [Google Scholar] [CrossRef] [PubMed]
- Böckmann, C.; Kirsche, A. Iterative regularization method for lidar remote sensing. Comput. Phys. Commun. 2006, 174, 607–615. [Google Scholar] [CrossRef]
- Samaras, S.; Nicolae, D.; Böckmann, C.; Vasilescu, J.; Binietoglou, I.; Labzovskii, L.; Toanca, F.; Papayannis, A. Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols. J. Comput. Phys. 2015, 299, 156–174. [Google Scholar] [CrossRef]
- Müller, D.; Böckmann, C.; Kolgotin, A.; Schneidenbach, L.; Chemyakin, E.; Rosemann, J.; Znak, P.; Romanov, A. Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET. Atmos. Meas. Tech. 2016, 9, 5007–5035. [Google Scholar] [CrossRef] [Green Version]
- Kirsche, A.; Böckmann, C. Padé iteration method for regularization. Appl. Math. Comput. 2006, 180, 648–663. [Google Scholar] [CrossRef]
- Sorrentino, A.; Sannino, A.; Spinelli, N.; Piana, M.; Boselli, A.; Tontodonato, V.; Castellano, P.; Wang, X. A Bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar data. Atmos. Meas. Tech. 2022, 15, 149–164. [Google Scholar] [CrossRef]
- Rader, F.; Traversi, R.; Severi, M.; Becagli, S.; Müller, K.J.; Nakoudi, K.; Ritter, C. Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data. Atmosphere 2021, 12, 271. [Google Scholar] [CrossRef]
- Müller, D.; Mattis, I.; Ansmann, A.; Wehner, B.; Althausen, D.; Wandinger, U.; Dubovik, O. Closure study on optical and microphysical properties of a mixed urban and Arctic haze air mass observed with Raman lidar and Sun photometer. J. Geophys. Res. Atmos. 2004, 109, 10. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Nicolaus, M.; Riemann-Campe, K.; Bliss, A.; Hutchings, J.K.; Granskog, M.A.; Haas, C.; Hoppmann, M.; Kanzow, T.; Krishfield, R.A.; Lei, R.; et al. Drift Trajectory of the Central Observatory 1 (CO1) of the Distributed Network of MOSAiC 2019/2020; PANGAEA: Bremerhven, Germany, 2021. [Google Scholar]
- Schulz, A. Die arktische Grenzschichthöhe auf der Basis von Sondierungen am Atmosphärenobservatorium in Ny-Alesund und im ECMWF-Modell. Ph.D. Thesis, Potsdam University, Potsdam, Germany, 2012. [Google Scholar]
- Richardson, H.; Basu, S.; Holtslag, A.A.M. Improving stable boundary-layer height estimation using a stability-dependent critical bulk Richardson number. Bound.-Layer Meteorol. 2013, 148, 93–109. [Google Scholar] [CrossRef]
- Ferrero, L.; Cappelletti, D.; Busetto, M.; Mazzola, M.; Lupi, A.; Lanconelli, C.; Becagli, S.; Traversi, R.; Caiazzo, L.; Giardi, F.; et al. Vertical profiles of aerosol and black carbon in the Arctic: A seasonal phenomenology along 2 years (2011–2012) of field campaigns. Atmos. Chem. Phys. 2016, 16, 12601–12629. [Google Scholar] [CrossRef] [Green Version]
- Zieger, P.; Fierz-Schmidhauser, R.; Gysel, M.; Ström, J.; Henne, S.; Yttri, K.E.; Baltensperger, U.; Weingartner, E. Effects of relative humidity on aerosol light scattering in the Arctic. Atmos. Chem. Phys. 2010, 10, 3875–3890. [Google Scholar] [CrossRef] [Green Version]
- Inoue, J.; Yamazaki, A.; Ono, J.; Dethloff, K.; Maturilli, M.; Neuber, R.; Edwards, P.; Yamaguchi, H. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route. Sci. Rep. 2015, 5, 16868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
High | January | February | March | April |
---|---|---|---|---|
(0.7–1) km | 30.2 (20.1–49.8) | 27.1 (20.2–34.7) | 22.1 (12.6–33.7) | 30.9 (20.6–40.3) |
(1–1.5) km | 32.3 (16.3–52.6) | 24.9 (11.6–39.5) | 21.9 (7.0–42.2) | 26.5 (15.0–38.6) |
Low | January | February | March | April |
(0.7–1) km | 54.3 (35.7–79.4) | 33.7 (20.0–47.2) | 27.8 (11.4–53.0) | 28.6 (15.0–40.7) |
(1–1.5) km | 58.5 (32.6–82.0) | 29.1 (7.3–54.0) | 16.3 (0.9–38.9) | 29.1 (10.3–50.3) |
High Backscatter Mode | Low Backscatter Mode | |
---|---|---|
Date | 21–23 February | Rest of February |
1.12 (0.98–1.23) | 0.69 (0.56–1.01) | |
28.9 (23.6–36.7) | 29.5 (18.3–41.9) | |
[%] | 0.65 (0.57–0.74) | 0.85 (0.74–1.02) |
Å nm) | 1.04 (0.83–1.22) | 0.96 (0.56–1.18) |
13 January | 21 February | |||
---|---|---|---|---|
Time [UTC] | 10:21–12:14 | 10:21–12:14 | 13:40–15:10 | 13:40–15:10 |
Height [m] | 1050–1250 | 1600–1900 | 1323–1586 | 2150–2750 |
[Mmsr] | 1.044 ± 0.08 | 0.465 ± 0.08 | 1.077 ±0.08 | 0.277 ± 0.07 |
[Mmsr] | 0.545 ± 0.05 | 0.277 ± 0.05 | 0.7414 ± 0.04 | 0.207 ± 0.02 |
[Mmsr] | 0.244 ± 0.02 | 0.092 ± 0.02 | 0.219 ± 0.02 | 0.029 ± 0.02 |
[Mm] | 35.912 ± 8 | 20.777 ± 9 | 40.848 ± 8 | 12.650 ± 7 |
[Mm] | 42.287 ± 19 | 5.343 ± 2.1 | 29.144 ±16 | 5.331 ± 2.3 |
[sr] | 34.40 (24.9–45.8) | 44.68 (23.3–81.2) | 37.93 (28.4–49.0) | 44.28 (16.3–94.9) |
[sr] | 77.59 (38.4–122.4) | 19.29 (9.6–38.8) | 39.33 (16.8–64.4) | 25.79 (13.3–40.8) |
1.311 ± 0.010 | 1.458 ± 0.009 | 1.526 ± 0.015 | 1.447 ± 0.011 | |
0.0006 ± 0.0005 | 0.0010 ± 0.0004 | 0.020 ± 0.004 | 0.0039 ± 0.0017 | |
Total: [m] | 0.73 ± 0.06 | 0.053 ± 0.003 | 0.0799 ± 0.0033 | 0.0538 ± 0.0014 |
First mode: [m] | 0.54 | 0.016 | 0.004 | 0.015 |
Second mode: [m] | 1.44 | 2.26 | 0.53 | 0.69 |
First mode: | 1.38 | 2.03 | 3.19 | 2.16 |
Second mode: | 1.16 | 1.09 | 1.14 | 1.09 |
First mode: [mcm] | 11.06 | 4.80 | 5.04 | 1.98 |
Second mode: [mcm] | 2.68 | 2.17 | 1.17 | 0.65 |
Total: [mcm] | 14.01 ± 1.22 | 7.27 ± 0.28 | 6.16 ± 0.19 | 2.90 ± 0.13 |
First mode: [mcm] | 47.36 | 261.14 | 143.52 | 90.15 |
Second mode: [mcm] | 5.32 | 2.83 | 6.37 | 2.79 |
Total: [mcm] | 57.24 ± 0.86 | 409.2 ± 14.53 | 231.66 ± 9.56 | 161.55 ± 0.13 |
First mode: [cm] | 10.46 | 30 899 | 58 420 | 9 848 |
Second mode: [cm] | 0.20 | 0.04 | 1.76 | 0.47 |
0.9863 ± 0.0013 | 0.98637 ± 0.00025 | 0.854 ± 0.012 | 0.960 ± 0.004 | |
0.9917 ± 0.0006 | 0.9777 ± 0.0007 | 0.862 ± 0.012 | 0.946 ± 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dube, J.; Böckmann, C.; Ritter, C. Lidar-Derived Aerosol Properties from Ny-Ålesund, Svalbard during the MOSAiC Spring 2020. Remote Sens. 2022, 14, 2578. https://doi.org/10.3390/rs14112578
Dube J, Böckmann C, Ritter C. Lidar-Derived Aerosol Properties from Ny-Ålesund, Svalbard during the MOSAiC Spring 2020. Remote Sensing. 2022; 14(11):2578. https://doi.org/10.3390/rs14112578
Chicago/Turabian StyleDube, Jonas, Christine Böckmann, and Christoph Ritter. 2022. "Lidar-Derived Aerosol Properties from Ny-Ålesund, Svalbard during the MOSAiC Spring 2020" Remote Sensing 14, no. 11: 2578. https://doi.org/10.3390/rs14112578
APA StyleDube, J., Böckmann, C., & Ritter, C. (2022). Lidar-Derived Aerosol Properties from Ny-Ålesund, Svalbard during the MOSAiC Spring 2020. Remote Sensing, 14(11), 2578. https://doi.org/10.3390/rs14112578