QuikSCAT Climatological Data Record: Land Contamination Flagging and Correction
Abstract
1. Introduction
2. Data
3. Method
3.1. Previous Work in Field
3.2. Proposed Land Correction Technique—Land Contribution Ratio Expected
4. Coastal Processing of QuikSCAT Slice to Coastal Wind Vectors
Data-Driven Quality Control and Flagging
5. Results
5.1. Buoy Comparisons
5.2. Comparisons to Oceanward WVCs
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fore, A.; Stiles, B.; Chau, A.; Williams, B.; Dunbar, R.; Rodríguez, E. Point-Wise Wind Retrieval and Ambiguity Removal Improvements for the QuikSCAT Climatological Data Set. Geosci. Remote. Sens. IEEE Trans. 2014, 52, 51–59. [Google Scholar] [CrossRef]
- Perlin, N.; Skyllingstad, E.D.; Samelson, R.M.; Barbour, P.L. Numerical Simulation of Air–Sea Coupling during Coastal Upwelling. J. Phys. Oceanogr. 2007, 37, 2081–2093. [Google Scholar] [CrossRef]
- Haack, T.; Chelton, D.; Pullen, J.; Doyle, J.D.; Schlax, M. Summertime Influence of SST on Surface Wind Stress off the U.S. West Coast from the U.S. Navy COAMPS Model. J. Phys. Oceanogr. 2008, 38, 2414–2437. [Google Scholar] [CrossRef]
- Jin, X.; Dong, C.; Kurian, J.; McWilliams, J.C.; Chelton, D.B.; Li, Z. SST–Wind Interaction in Coastal Upwelling: Oceanic Simulation with Empirical Coupling. J. Phys. Oceanogr. 2009, 39, 2957–2970. [Google Scholar] [CrossRef]
- Gille, S.T.; Llewellyn Smith, S.G.; Statom, N.M. Global observations of the land breeze. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Edwards, K.A.; Rogerson, A.M.; Winant, C.D.; Rogers, D.P. Adjustment of the Marine Atmospheric Boundary Layer to a Coastal Cape. J. Atmos. Sci. 2001, 58, 1511–1528. [Google Scholar] [CrossRef]
- Dorman, C.E.; Mejia, J.F.; Koračin, D. Impact of U.S. west coastline inhomogeneity and synoptic forcing on winds, wind stress, and wind stress curl during upwelling season. J. Geophys. Res. Ocean. 2013, 118, 4036–4051. [Google Scholar] [CrossRef]
- Winant, C.D.; Dorman, C.E.; Friehe, C.A.; Beardsley, R.C. The Marine Layer off Northern California: An Example of Supercritical Channel Flow. J. Atmos. Sci. 1988, 45, 3588–3605. [Google Scholar] [CrossRef]
- Enriquez, A.G.; Friehe, C.A. Effects of Wind Stress and Wind Stress Curl Variability on Coastal Upwelling. J. Phys. Oceanogr. 1995, 25, 1651–1671. [Google Scholar] [CrossRef]
- Bane, J.M.; Levine, M.D.; Samelson, R.M.; Haines, S.M.; Meaux, M.F.; Perlin, N.; Kosro, P.M.; Boyd, T. Atmospheric forcing of the Oregon coastal ocean during the 2001 upwelling season. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef]
- Chavanne, C.; Flament, P.; Lumpkin, R.; Dousset, B.; Bentamy, A. Scatterometer observations of wind variations induced by oceanic islands: Implications for wind-driven ocean circulation. Can. J. Remote Sens. 2002, 28, 466–474. [Google Scholar] [CrossRef]
- Dong, C.; McWilliams, J.C. A numerical study of island wakes in the Southern California Bight. Cont. Shelf Res. 2007, 27, 1233–1248. [Google Scholar] [CrossRef]
- Smith, R.B.; Grubišić, V. Aerial Observations of Hawaii’s Wake. J. Atmos. Sci. 1993, 50, 3728–3750. [Google Scholar] [CrossRef][Green Version]
- Botsford, L.W.; Lawrence, C.A.; Dever, E.P.; Hastings, A.; Largier, J. Wind strength and biological productivity in upwelling systems: An idealized study. Fish. Oceanogr. 2003, 12, 245–259. [Google Scholar] [CrossRef]
- Wilkerson, F.P.; Lassiter, A.M.; Dugdale, R.C.; Marchi, A.; Hogue, V.E. The phytoplankton bloom response to wind events and upwelled nutrients during the CoOP WEST study. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 3023–3048. [Google Scholar] [CrossRef]
- Chavez, F.; Messié, M. A comparison of Eastern Boundary Upwelling Ecosystems. Prog. Oceanogr. 2009, 83, 80–96. [Google Scholar] [CrossRef]
- Barth, J.A.; Menge, B.A.; Lubchenco, J.; Chan, F.; Bane, J.M.; Kirincich, A.R.; McManus, M.A.; Nielsen, K.J.; Pierce, S.D.; Washburn, L. Delayed upwelling alters nearshore coastal ocean ecosystems in the northern California current. Proc. Natl. Acad. Sci. USA 2007, 104, 3719–3724. [Google Scholar] [CrossRef]
- LeMehaute, B.; Hanes, D.M. The Sea, Ocean Engineering Science; Wiley: Hoboken, NJ, USA, 1990; Volume 9, pp. 423–466. [Google Scholar]
- Brink, K.H.; Cowles, T.J. The Coastal Transition Zone program. J. Geophys. Res. Ocean. 1991, 96, 14637–14647. [Google Scholar] [CrossRef]
- Strub, P.T.; Combes, V.; Shillington, F.A.; Pizarro, O. Chapter 14—Currents and Processes along the Eastern Boundaries. In Ocean Circulation and Climate; Siedler, G., Griffies, S.M., Gould, J., Church, J.A., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 103, pp. 339–384. [Google Scholar] [CrossRef]
- Aguirre, C.; Pizarro, Ó.; Strub, P.T.; Garreaud, R.; Barth, J.A. Seasonal dynamics of the near-surface alongshore flow off central Chile. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef]
- Strub, P.T.; Kosro, P.M.; Huyer, A. The nature of the cold filaments in the California Current system. J. Geophys. Res. Ocean. 1991, 96, 14743–14768. [Google Scholar] [CrossRef]
- Crawford, W.; Brickley, P.; Thomas, A. Mesoscale eddies dominate surface phytoplankton in northern Gulf of Alaska. Prog. Oceanogr. 2007, 75, 287–303. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Chelton, D.B.; Gaube, P.; Schlax, M.G.; Early, J.J.; Samelson, R.M. The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll. Science 2011, 334, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Gaube, P.; Chelton, D.B.; Strutton, P.G.; Behrenfeld, M.J. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Ocean. 2013, 118, 6349–6370. [Google Scholar] [CrossRef]
- Mann, K.H. Ecology of Coastal Waters: With Implications for Management; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Weiher, R.; Sen, A. Economic statistics for NOAA, 5th ed.; U.S. Department of Commerce: Washington, DC, USA, 2006. [Google Scholar]
- PICKETT, M.H.; SCHWING, F.B. Evaluating upwelling estimates off the west coasts of North and South America. Fish. Oceanogr. 2006, 15, 256–269. [Google Scholar] [CrossRef]
- Hasager, C.B.; Mouche, A.; Badger, M.; Bingöl, F.; Karagali, I.; Driesenaar, T.; Stoffelen, A.; Peña, A.; Longépé, N. Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT. Remote Sens. Environ. 2015, 156, 247–263. [Google Scholar] [CrossRef]
- Liu, T.; Tang, W. Equivalent Neutral Wind; Technical Report; JPL: Pasadena, CA, USA, 1996. [Google Scholar]
- Owen, M.; Long, D. Land-Contamination Compensation for QuikSCAT Near-Coastal Wind Retrieval. Geosci. Remote Sens. IEEE Trans. 2009, 47, 839–850. [Google Scholar] [CrossRef]
- Vanhoff, B.A.; Freilich, M.H.; Strub, T. QuikSCAT Level 3 Near-Coast Wind and Stress Fields with Enhanced Coastal Coverage (OSU): US West Coast Region; National Aeronautics and Space Administration: Washington, DC, USA, 2013. [Google Scholar]
- Strub, P.T.; James, C.; Montecino, V.; Rutllant, J.A.; Blanco, J.L. Ocean circulation along the southern Chile transition region (38°–46°S): Mean, seasonal and interannual variability, with a focus on 2014–2016. Prog. Oceanogr. 2019, 172, 159–198. [Google Scholar] [CrossRef]
Version | Coastal Processing Method | Description |
---|---|---|
3.0 | Conservative Flagging | 20 km distance threshold from low-res landmap. |
3.1 | Land Contamination Ratio | Reject slices with LCR value . |
4.0 | LCRES No QC | Same as 4.1 except no flag for poor coastal retrievals, not publicly available |
4.1 | LCRES | Reject slices with LCRES and use land correction. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fore, A.G.; Stiles, B.W.; Strub, P.T.; West, R.D. QuikSCAT Climatological Data Record: Land Contamination Flagging and Correction. Remote Sens. 2022, 14, 2487. https://doi.org/10.3390/rs14102487
Fore AG, Stiles BW, Strub PT, West RD. QuikSCAT Climatological Data Record: Land Contamination Flagging and Correction. Remote Sensing. 2022; 14(10):2487. https://doi.org/10.3390/rs14102487
Chicago/Turabian StyleFore, Alexander G., Bryan W. Stiles, Paul Ted Strub, and Richard D. West. 2022. "QuikSCAT Climatological Data Record: Land Contamination Flagging and Correction" Remote Sensing 14, no. 10: 2487. https://doi.org/10.3390/rs14102487
APA StyleFore, A. G., Stiles, B. W., Strub, P. T., & West, R. D. (2022). QuikSCAT Climatological Data Record: Land Contamination Flagging and Correction. Remote Sensing, 14(10), 2487. https://doi.org/10.3390/rs14102487