The Zonation of Mountain Frozen Ground under Aspect Adjustment Revealed by Ground-Penetrating Radar Survey—A Case Study of a Small Catchment in the Upper Reaches of the Yellow River, Northeastern Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Method and Data
2.2.1. GPR
- (1)
- Field survey and GPR data acquisition
- (2)
- GPR data processing
- (3)
- GPR data Interpretation
2.2.2. Boreholes and Pits
2.2.3. Spatial Data Products
3. Results
3.1. Interpreted Results of GPR Profiles
3.2. Construction of an Empirical–Statistical Model of Permafrost Distribution
3.3. Model-Based Spatial Mapping and Evaluation
3.3.1. Frozen Ground Mapping by the Proposed Method
3.3.2. Map Evaluation and Comparison with Two Existing Permafrost Maps
3.4. Temperature Characteristics at the Boundaries between Different Frozen Ground Zones
3.5. Vegetation Types in Different Zones of Frozen Ground
4. Discussion
4.1. The Influence of Solar Radiation on Permafrost in Mountainous Regions
4.2. Significance and Limitation of this Model Based on GPR Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ID of the GPR Profile | Start of the Survey Line | End of the Survey Line | Elevation of SPB (m) | ID of the GPR Profile | Start Of the Survey Line | End of the Survey Line | Elevation of SPB (m) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Latitude (°N) | Longitude (°E) | Latitude (°N) | Longitude (°E) | Latitude (°N) | Longitude (°E) | Latitude (°N) | Longitude (°E) | ||||
P001 | 35.4856 | 99.5094 | 35.4854 | 99.5034 | —— | P065 | 35.4795 | 99.4232 | 35.4746 | 99.4268 | 4336 |
P002 | 35.4855 | 99.5023 | 35.4872 | 99.4954 | 4338 | P066 | 35.4753 | 99.4279 | 35.4761 | 99.4295 | —— |
P003 | 35.4852 | 99.5077 | 35.4851 | 99.5072 | —— | P067 | 35.4762 | 99.4295 | 35.4700 | 99.4297 | 4270 |
P004 | 35.4848 | 99.5057 | 35.4844 | 99.5056 | —— | P068 | 35.4690 | 99.4299 | 35.4696 | 99.4322 | —— |
P005 | 35.3603 | 99.1728 | 35.3678 | 99.1688 | —— | P069 | 35.3459 | 99.2710 | 35.3459 | 99.2645 | —— |
P006 | 35.3753 | 99.1704 | 35.3726 | 99.1725 | 4227 | P070 | 35.3444 | 99.2769 | 35.3457 | 99.2717 | —— |
P007 | 35.3659 | 99.1703 | 35.3662 | 99.1701 | —— | P071 | 35.3490 | 99.2790 | 35.3456 | 99.2754 | 4355 |
P008 | 35.3572 | 99.1450 | 25.3575 | 99.1449 | —— | P072 | 35.3462 | 99.2775 | 35.3468 | 99.2765 | 4354 |
P009 | 35.3583 | 99.1453 | 35.3552 | 99.1449 | —— | P073 | 35.2951 | 99.2537 | 35.2960 | 99.2476 | 4244 |
P010 | 35.3566 | 99.1449 | 35.3519 | 99.1684 | —— | P074 | 35.2667 | 99.2392 | 35.2677 | 99.2378 | —— |
P011 | 35.3570 | 99.1561 | 35.3558 | 99.1556 | —— | P075 | 35.2684 | 99.2365 | 35.2711 | 99.2312 | 4217 |
P012 | 35.3569 | 99.1560 | 35.3567 | 99.1441 | —— | P076 | 35.3655 | 99.2561 | 35.3629 | 99.2495 | —— |
P013 | 35.4743 | 99.4959 | 35.4731 | 99.4925 | 4262 | P077 | 35.3261 | 99.2778 | 35.3308 | 99.2737 | —— |
P014 | 35.4841 | 99.5071 | 35.4647 | 99.4915 | 4267 | P078 | 35.3637 | 99.2867 | 35.3630 | 99.2860 | —— |
P015 | 35.4647 | 99.4915 | 35.4656 | 99.4972 | 4218 | P079 | 35.3630 | 99.2860 | 35.3635 | 99.2809 | —— |
P016 | 35.4651 | 99.4956 | 35.4656 | 99.4974 | 4261 | P080 | 35.3635 | 99.2809 | 35.3635 | 99.2768 | —— |
P017 | 35.4583 | 99.4873 | 35.4569 | 99.4932 | 4205 | P081 | 35.2503 | 99.2241 | 35.2538 | 99.2206 | 4257 |
P018 | 35.5012 | 99.4818 | 35.4783 | 99.4915 | 4346 | P082 | 35.2558 | 99.2175 | 35.2613 | 99.2171 | —— |
P019 | 35.4798 | 99.4899 | 35.4808 | 99.4914 | 4290 | P083 | 35.2617 | 99.2195 | 35.2672 | 99.2159 | 4237 |
P020 | 35.5158 | 99.5099 | 35.5320 | 99.5075 | 4263 | P084 | 35.2649 | 99.2299 | 35.2675 | 99.2278 | 4234 |
P021 | 35.5403 | 99.5074 | 35.5334 | 99.5182 | 4242 | P085 | 35.2977 | 99.2553 | 35.3017 | 99.2463 | —— |
P022 | 35.5369 | 99.5120 | 35.5379 | 99.5100 | 4228 | P086 | 35.3460 | 99.1643 | 35.3423 | 99.1661 | —— |
P023 | 35.5708 | 99.5268 | 35.5694 | 99.5312 | —— | P087 | 35.3452 | 99.1670 | 35.3475 | 99.1692 | —— |
P024 | 35.5695 | 99.5308 | 35.5827 | 99.5345 | 4115 | P088 | 35.3583 | 99.1448 | 35.3555 | 99.1453 | 4180 |
P024 | 35.5695 | 99.5308 | 35.5827 | 99.5345 | 4070 | P089 | 35.3555 | 99.1459 | 35.3584 | 99.1461 | 4180 |
P025 | 35.5301 | 99.5025 | 35.5326 | 99.5030 | 4322 | P090 | 35.3563 | 99.1570 | 35.3574 | 99.1526 | 4181 |
P026 | 35.5312 | 99.5019 | 35.5392 | 99.5017 | 4307 | P091 | 35.3580 | 99.1346 | 35.3602 | 99.1543 | 4188 |
P027 | 35.6536 | 99.5281 | 35.6545 | 99.5450 | —— | P092 | 35.3585 | 99.1320 | 35.3611 | 99.1308 | —— |
P028 | 35.6031 | 99.5177 | 35.6050 | 99.5314 | —— | P093 | 35.4077 | 99.1736 | 35.4030 | 99.1736 | —— |
P029 | 35.6050 | 99.5320 | 35.6044 | 99.5479 | —— | P094 | 35.3977 | 99.1799 | 35.4001 | 99.1763 | —— |
P030 | 35.5586 | 99.5052 | 35.5547 | 99.5170 | 4202 | P095 | 35.3777 | 99.2784 | 35.3733 | 99.2794 | —— |
P031 | 35.5540 | 99.5165 | 35.5525 | 99.5222 | 4151 | P096 | 35.3692 | 99.2867 | 35.3732 | 99.2799 | —— |
P032 | 35.5540 | 99.5218 | 35.5604 | 99.5201 | 4152 | P097 | 35.3776 | 99.2891 | 35.3771 | 99.2853 | 4323 |
P033 | 35.4829 | 99.5002 | 35.4849 | 99.4982 | 4302 | P098 | 35.3796 | 99.2875 | 35.3802 | 99.2840 | 4339 |
P034 | 35.4831 | 99.5001 | 35.4827 | 99.4994 | 4301 | P099 | 35.3767 | 99.2856 | 35.3727 | 99.2793 | —— |
P035 | 35.4922 | 99.4768 | 35.4876 | 99.4820 | 4392 | P100 | 35.3784 | 99.2773 | 35.3770 | 99.2786 | —— |
P036 | 35.4870 | 99.4818 | 35.4782 | 99.4901 | 4289 | P101 | 35.3817 | 99.2994 | 35.3813 | 99.2964 | —— |
P037 | 35.4087 | 99.5129 | 35.4039 | 99.5118 | 4275 | P102 | 35.3864 | 99.2975 | 35.3816 | 99.2946 | 4370 |
P038 | 35.4039 | 99.5119 | 35.4054 | 99.5028 | 4255 | P103 | 35.3684 | 99.2954 | 35.3731 | 99.2796 | 4295 |
P039 | 35.4054 | 99.5028 | 35.4095 | 99.5033 | —— | P104 | 35.3735 | 99.2880 | 35.3735 | 99.2837 | —— |
P040 | 35.4098 | 99.5033 | 35.4110 | 99.5052 | —— | P105 | 35.3918 | 99.3080 | 35.3896 | 99.3072 | —— |
P041 | 35.4007 | 99.5738 | 35.3990 | 99.5638 | —— | P106 | 35.4361 | 99.3883 | 35.4287 | 99.3813 | —— |
P042 | 35.4093 | 99.5339 | 35.4079 | 99.5281 | —— | P107 | 35.4111 | 99.3436 | 35.4095 | 99.3472 | —— |
P043 | 35.4078 | 99.5275 | 35.4063 | 99.5170 | 4305 | P108 | 35.4119 | 99.3374 | 35.4094 | 99.3353 | —— |
P044 | 35.4107 | 99.5036 | 35.4117 | 99.4978 | —— | P109 | 35.4063 | 99.3329 | 35.4078 | 99.3342 | 4228 |
P045 | 35.4798 | 99.4009 | 35.4820 | 99.4029 | —— | P110 | 35.4030 | 99.3328 | 35.4017 | 99.3378 | —— |
P046 | 35.6368 | 99.4004 | 35.6345 | 99.3994 | —— | P111 | 35.4019 | 99.3323 | 35.4015 | 99.3373 | —— |
P047 | 35.6327 | 99.3996 | 35.6255 | 99.3951 | —— | P112 | 35.3974 | 99.3438 | 35.3979 | 99.3433 | —— |
P048 | 35.6256 | 99.3952 | 35.6197 | 99.3975 | —— | P113 | 35.3990 | 99.3267 | 35.3966 | 99.3282 | 4257 |
P049 | 35.6195 | 99.3972 | 35.6197 | 99.4065 | 4313 | P114 | 35.4025 | 99.3103 | 35.3982 | 99.3165 | 4329 |
P050 | 35.6197 | 99.4088 | 35.6207 | 99.4154 | 4288 | P115 | 35.4194 | 99.3708 | 35.4223 | 99.3723 | 4038 |
P051 | 35.5878 | 99.4262 | 35.5859 | 99.4200 | —— | P116 | 35.4069 | 99.3578 | 35.4084 | 99.3551 | —— |
P052 | 35.5858 | 99.4199 | 35.5912 | 99.4247 | 4275 | P117 | 35.4084 | 99.3551 | 35.4085 | 99.3540 | 4200 |
P053 | 35.5898 | 99.4267 | 35.5896 | 99.4296 | 4272 | P118 | 35.4085 | 99.3539 | 35.4096 | 99.3502 | —— |
P054 | 35.5896 | 99.4296 | 35.6009 | 99.4291 | 4288 | P119 | 35.4045 | 99.3528 | 35.4080 | 99.3494 | 4159 |
P055 | 35.6097 | 99.4416 | 35.6143 | 99.4407 | —— | P120 | 35.4033 | 99.3482 | 35.4094 | 99.3504 | 4133 |
P056 | 35.6143 | 99.4403 | 35.6155 | 99.4396 | 4282 | P121 | 35.3979 | 99.3433 | 35.3990 | 99.3422 | —— |
P057 | 35.6104 | 99.4609 | 35.6070 | 99.4649 | 4159 | P122 | 35.3990 | 99.3422 | 35.4005 | 99.3411 | 4199 |
P058 | 35.4660 | 99.4070 | 35.4644 | 99.4075 | —— | P123 | 35.3990 | 99.3267 | 35.3966 | 99.3282 | —— |
P059 | 35.4645 | 99.4076 | 35.4636 | 99.4138 | 4318 | P124 | 35.3938 | 99.3285 | 35.3957 | 99.3294 | 4251 |
P060 | 35.4635 | 99.4139 | 35.4633 | 99.4155 | —— | P125 | 35.3892 | 99.3371 | 35.3926 | 99.3324 | 4233 |
P061 | 35.4699 | 99.4252 | 35.4692 | 99.4282 | —— | P126 | 35.3957 | 99.3202 | 35.3958 | 99.3276 | 4252 |
P062 | 35.4683 | 99.4299 | 35.4644 | 99.4308 | —— | P127 | 35.3871 | 99.3096 | 35.3896 | 99.3078 | —— |
P063 | 35.4637 | 99.4311 | 35.4632 | 99.4324 | —— | P128 | 35.3901 | 99.3102 | 35.3831 | 99.2995 | —— |
P064 | 35.4767 | 99.4266 | 35.4794 | 99.4235 | 4330 |
References
- Zhang, T.; Heginbottom, J.A.; Barry, R.G.; Brown, J. Further statistics on the distribution of permafrost and ground ice in the northern hemisphere. Polar Geogr. 2000, 24, 126–131. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G.; Zhang, T.; Wu, Q.; Jin, H.; Jin, R. Distribution of permafrost in china: An overview of existing permafrost maps. Permafr. Periglac. Processes 2012, 23, 322–333. [Google Scholar] [CrossRef]
- Haeberli, W. Mountain permafrost—Research frontiers and a special long-term challenge. Cold Reg. Sci. Technol. 2013, 96, 71–76. [Google Scholar] [CrossRef]
- Zhao, L.; Zou, D.; Hu, G.; Du, E.; Pang, Q.; Xiao, Y.; Li, R.; Sheng, Y.; Wu, X.; Sun, Z.; et al. Changing climate and the permafrost environment on the Qinghai–Tibet (Xizang) Plateau. Permafr. Periglac. Processes 2020, 31, 396–405. [Google Scholar] [CrossRef]
- King, L. Zonation and ecology of high mountain permafrost in Scandinavia. Geogr. Ann. Ser. A Phys. Geogr. 1986, 68, 131–139. [Google Scholar] [CrossRef]
- Haeberli, W.; Noetzli, J.; Arenson, L.; Delaloye, R.; Gärtner-Roer, I.; Gruber, S.; Isaksen, K.; Kneisel, C.; Krautblatter, M.; Phillips, M. Mountain permafrost: Development and challenges of a young research field. J. Glaciol. 2011, 56, 1043–1058. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Dramis, F. Distribution of mountain permafrost and climate. Permafr. Periglac. Processes 1992, 3, 83–91. [Google Scholar]
- Zhang, G.; Yao, T.; Xie, H.; Qin, J.; Ye, Q. Estimating surface temperature changes of lakes in the Tibetan Plateau using modis lst data. J. Geophys. Res. 2014, 119, 8552–8567. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.R. IPCC (2014) climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In Contribution of Working Group II to the 5th Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; p. 1132. [Google Scholar]
- Wu, Q.; Zhang, T. Recent permafrost warming on the Qinghai-Tibetan Plateau. J. Geophys. Res. 2008, 113, D13108. [Google Scholar] [CrossRef]
- Zhao, L.; Zou, D.; Hu, G.; Wu, T.; Du, E.; Liu, G.; Xiao, Y.; Li, R.; Pang, Q.; Qiao, Y.; et al. A synthesis dataset of permafrost thermal state for the qinghai–tibet (xizang) plateau, China. Earth Syst. Sci. Data 2021, 13, 4207–4218. [Google Scholar] [CrossRef]
- Mollaret, C.; Hilbich, C.; Pellet, C.; Flores-Orozco, A.; Delaloye, R.; Hauck, C. Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites. Cryosphere 2019, 13, 2557–2578. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Yuanshou, L.I.; Qingbai, W.U.; Wang, Y. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Sci. China Ser. D Earth Sci. 2006, 49, 1156–1169. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, J.; Lin, Z.; Xu, X.; Ouyang, H. Linking thaw depth with soil moisture and plant community composition: Effects of permafrost degradation on alpine ecosystems on the Qinghai-Tibet Plateau. Plant Soil 2013, 367, 687–700. [Google Scholar] [CrossRef]
- Rogger, M.; Chirico, G.B.; Hausmann, H.; Krainer, K.; Brückl, E.; Stadler, P.; Blöschl, G. Impact of mountain permafrost on flow path and runoff response in a high alpine catchment. Water Resour. Res. 2017, 53, 1288–1308. [Google Scholar] [CrossRef] [Green Version]
- Patton, A.I.; Rathburn, S.R.; Capps, D.; Brown, R.A.; Singleton, J.S. Lithologic, geomorphic, and permafrost controls on recent landsliding in the Alaska range. Geosphere 2020, 16, 1479–1494. [Google Scholar] [CrossRef]
- Gruber, S.; Haeberli, W. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J. Geophys. Res. Earth Surf. 2007, 112, F02S18. [Google Scholar] [CrossRef] [Green Version]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Wang, H. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981–2010. J. Geophys. Res. Atmos. 2013, 118, 5216–5230. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, T.; Zhao, L.; Wu, X.; Li, R.; Xie, C.; Pang, Q.; Hu, G.; Qiao, Y.; Zhao, G.; et al. Numerical modeling of the active layer thickness and permafrost thermal state across Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 11604–11620. [Google Scholar] [CrossRef]
- Nan, Z.; Li, S.; Liu, Y. Mean annual ground temperature distribution on the qinghai-tibetan plateau: Permafrost distribution mapping and further aplication. J. Glaciol. Geocryol. 2002, 24, 142–148. [Google Scholar]
- Wang, T.; Yang, D.; Fang, B.; Yang, W.; Qin, Y.; Wang, Y. Data-driven mapping of the spatial distribution and potential changes of frozen ground over the Tibetan Plateau. Sci. Total Environ. 2019, 649, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Wu, T.; Zhu, X.; Hu, G.; Zou, D.; Wu, X.; Li, R.; Xie, C.; Qiao, Y.; Pang, Q.; et al. Simulation of the present and future projection of permafrost on the Qinghai-Tibet Plateau with statistical and machine learning models. J. Geophys. Res. Atmos. 2021, 126, e2020JD033402. [Google Scholar] [CrossRef]
- Deluigi, N.; Lambiel, C.; Kanevski, M. Data-driven mapping of the potential mountain permafrost distribution. Sci. Total Environ. 2017, 590, 370–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.A.R.; Singh, S.; Pandey, P.; Bhardwaj, A.; Ali, S.N.; Chaturvedi, V.; Ray, P.K.C. Modelling permafrost distribution in western himalaya using remote sensing and field observations. Remote Sens. 2021, 13, 4403. [Google Scholar] [CrossRef]
- Bonnaventure, P.P.; Lewkowicz, A.G. Modelling climate change effects on the spatial distribution of mountain permafrost at three sites in northwest Canada. Clim. Chang. 2011, 105, 293–312. [Google Scholar] [CrossRef]
- Cheng, G. Influence of local factors on permafrost occurrence and their implications for Qinghai-Xizang railway design. Sci. China Ser. D Earth Sci. 2004, 47, 704–709. [Google Scholar] [CrossRef]
- Jing, L.; Yu, S.; Ji, C.; Zhang, X.; Cao, Y. Modeling permafrost distribution using remote sensing-derived vegetation data in the source region of the Datong river in the northwestern China. In Proceedings of the Geoscience & Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 2225–2228. [Google Scholar]
- Bonnaventure, P.; Lewkowicz, A.; Kremer, M.; Sawada, M. A permafrost probability model for the southern Yukon and northern British Columbia, Canada. Permafr. Periglac. Processes 2012, 23, 52–68. [Google Scholar] [CrossRef]
- Cao, B.; Gruber, S.; Zhang, T.; Li, L.; Peng, X.; Wang, K.; Zheng, L.; Shao, W.; Guo, H. Spatial variability of active layer thickness detected by ground-penetrating radar in the Qilian mountains, western China. J. Geophys. Res. Earth Surf. 2017, 122, 574–591. [Google Scholar] [CrossRef]
- Neal, A. Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth Sci. Rev. 2004, 66, 261–330. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, T.; Wu, Q.; Sheng, Y.; Zhao, L.; Zou, D. Brief communication: Evaluation and inter-comparisons of Qinghai–Tibet Plateau permafrost maps based on a new inventory of field evidence. Cryosphere 2019, 13, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Kneisel, C.; Hauck, C.; Fortier, R.; Moorman, B. Advances in geophysical methods for permafrost investigations. Permafr. Periglac. Processes 2008, 19, 157–178. [Google Scholar] [CrossRef]
- Wu, T.; Li, S.; Cheng, G.; Nan, Z. Using ground-penetrating radar to detect permafrost degradation in the northern limit of permafrost on the Tibetan Plateau. Cold Reg. Sci. Technol. 2005, 41, 211–219. [Google Scholar] [CrossRef]
- Yu, Q.; Bai, Y.; Jin, H.; Qian, J.; Pan, X. The study of the patchy permafrost along the Heihe-Bei’an highway in Xiao Hinggan mountains with ground penetrating radar. J. Glaciol. Geocryol. 2008, 30, 461–468. [Google Scholar]
- Sudakova, M.; Sadurtdinov, M.; Skvortsov, A.; Tsarev, A.; Malkova, G.; Molokitina, N.; Romanovsky, V. Using ground penetrating radar for permafrost monitoring from 2015–2017 at calm sites in the Pechora river delta. Remote Sens. 2021, 13, 3271. [Google Scholar] [CrossRef]
- Ebihara, S.; Yamamoto, A.; Nakashima, Y.; Takasawa, K.; Sato, M. GPR application to estimate vertical profiles of permafrost in Mongolia and Siberia. Proc. SPIE-Int. Soc. Opt. Eng. 2000, 4084, 1–7. [Google Scholar]
- Shen, Y.; Zuo, R.; Liu, J.; Tian, Y.; Wang, Q. Characterization and evaluation of permafrost thawing using GPR attributes in the Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2018, 151, 302–313. [Google Scholar] [CrossRef]
- Jørgensen, A.; Andreasen, F. Mapping of permafrost surface using ground-penetrating radar at Kangerlussuaq airport, western Greenland. Cold Reg. Sci. Technol. 2007, 48, 64–72. [Google Scholar] [CrossRef]
- Wu, T.; Wang, Q.; Watanabe, M.; Chen, J.; Battogtokh, D. Mapping vertical profile of discontinuous permafrost with ground penetrating radar at Nalaikh depression, Mongolia. Environ. Geol. 2009, 56, 1577–1583. [Google Scholar] [CrossRef]
- Moorman, B.; Robinson, S.; Burgess, M. Imaging periglacial conditions with ground-penetrating radar. Permafr. Periglac. Processes 2003, 14, 319–329. [Google Scholar] [CrossRef]
- Du, E.; Zhao, L.; Zou, D.; Li, R.; Wang, Z.; Wu, X.; Hu, G.; Zhao, Y.; Liu, G.; Sun, Z. Soil moisture calibration equations for active layer GPR detection—A case study specially for the Qinghai–Tibet Plateau permafrost regions. Remote Sens. 2020, 12, 605. [Google Scholar] [CrossRef] [Green Version]
- Stevens, C.; Moorman, B.; Solomon, S.; Hugenholtz, C. Mapping subsurface conditions within the near-shore zone of an arctic delta using ground penetrating radar. Cold Reg. Sci. Technol. 2009, 56, 30–38. [Google Scholar] [CrossRef]
- Brandt, O.; Langley, K.; Kohler, J.; Hamran, S. Detection of buried ice and sediment layers in permafrost using multi-frequency ground penetrating radar: A case examination on Svalbard. Remote Sens. Environ. 2007, 111, 212–227. [Google Scholar] [CrossRef]
- Sokolov, K.; Fedorova, L.; Fedorov, M. Prospecting and evaluation of underground massive ice by ground-penetrating radar. Geosciences 2020, 10, 274. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data. 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- French, H.M. The Periglacial Environment; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Devore, J. Probability and Statistics: For Engineering and the Sciences; China Machine Press: Beijing, China, 2004. [Google Scholar]
- Gruber, S.; Hoelzle, M. Statistical modelling of mountain permafrost distribution: Local calibration and incorporation of remotely sensed data. Permafr. Periglac. Processes 2001, 12, 69–77. [Google Scholar] [CrossRef]
- Gruber, S.; Haeberli, W. Mountain Permafrost Bt-Permafrost Soils; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Zhou, Y.; Guo, D. Principal characteristics of permafrost in China. J. Glaciol. Geocryol. 1982, 4, 1–19. [Google Scholar]
- Marchenko, S.S.; Gorbunov, A.P.; Romanovsky, V.E. Permafrost warming in the Tien Shan mountains, central Asia. Glob. Planet. Chang. 2007, 56, 311–327. [Google Scholar] [CrossRef]
- Noetzli, J.; Gruber, S.; Kohl, T.; Salzmann, N.; Haeberli, W. Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography. J. Geophys. Res. Earth Surf. 2007, 112, F02S13. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Niu, F.; Cheng, H.; Lin, Z.; Liu, H.; Luo, J. The permafrost distribution model and its change trend of Qinghai-Tibet engineering corridor. J. Mt. Sci. 2013, 31, 226–233. [Google Scholar]
- Imhof, M. Modelling and verification of the permafrost distribution in the Bernese Alps (western Switzerland). Permafr. Periglac. Processes 1996, 7, 267–280. [Google Scholar] [CrossRef]
Different Zones | Abbreviation | Explanation | Abbreviation | Explanation | Calculation Method | Explanation |
---|---|---|---|---|---|---|
Probable permafrost zone | NPr | The total number of test points/pixels located in probable permafrost zone | NP | Number of test points/pixels with permafrost present in NPr | 100% | The consistency of probable permafrost zone () can be expressed by the proportion of test points/pixels accurately identified as permafrost. |
Nnp | Number of test points/pixels with no permafrost in NPr | |||||
SPr | The total area of probable permafrost zone | —— | —— | —— | —— | |
Possible permafrost zone | NPo | The total number of test points/pixels located in possible permafrost zone | NP | Number of test points/pixels with permafrost present in NPo | 100% | Ideally, permafrost and non-permafrost should each account for 50% of the possible permafrost zone. represents the degree to which the mapping results match the desired state. |
Nnp | Number of test points/pixels with no permafrost in NPo | |||||
SPo | The total area of possible permafrost zone | —— | —— | —— | —— | |
No permafrost zone | Npf | The total number of test points/pixels located in no permafrost zone | NP | Number of test points/pixels with permafrost present in NPf | 100% | The consistency of the no permafrost zone () can be expressed by the proportion of test points/pixels accurately identified as no permafrost. |
Nnp | Number of test points/pixels with no permafrost in NPf | |||||
Spf | The total area of no permafrost zone | —— | —— | —— | —— | |
The entire region | St | The total area | —— | —— | —— | |
At | The total consistency | —— | —— | is the overall mapping consistency calculated by the area weighted average method. |
Frozen Ground Zone | Area (km2) | Area Percentage (%) | Ground Truth | Nan’s Map | Zou’s Map |
---|---|---|---|---|---|
Probable permafrost | 2400 | 38.1% | 87.5% | 99.8% | 86.5% |
Possible permafrost | 1575 | 25.0% | 96.3% | 91.6% | 58.2% |
No permafrost | 2323 | 36.9% | 82.4% | 99.8% | 92.9% |
Total/Average | 6298 | 100% | 87.8% * | 97.7% * | 81.8% * |
Frozen Ground Zone | Vegetation Type | Number of Samples | Number of Samples with Permafrost Present | Proportion of Samples with Permafrost Present | Notes |
---|---|---|---|---|---|
No permafrost zone | AS | 8 | 3 | 37.5% | Although permafrost was found in only three sites with alpine steppe coverage, the three sites were all located in the seasonal wetlands around Kuhai Lake. |
AM | 8 | 0 | 0% | ||
ASM | 0 | 0 | 0% | ||
All types | 16 | 3 | 18.8% | ||
Possible permafrost zone | AS | 6 | 1 | 16.7% | Permafrost was found in all sites with swamp meadows. The site with alpine steppe had the lowest possibility of permafrost. |
AM | 11 | 3 | 27.3% | ||
ASM | 3 | 3 | 100.0% | ||
All types | 20 | 7 | 35.0% | ||
Probable permafrost zone | AS | 5 | 4 | 80.0% | The site with alpine steppe, where no permafrost was found, is located in the northeast of Kuhai Lake Basin. |
AM | 13 | 12 | 92.3% | ||
ASM | 3 | 3 | 100.0% | ||
All types | 21 | 19 | 90.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Zhao, L.; Xie, C.; Zou, D.; Wu, T.; Du, E.; Wang, L.; Sheng, Y.; Zhao, Y.; Xiao, Y.; et al. The Zonation of Mountain Frozen Ground under Aspect Adjustment Revealed by Ground-Penetrating Radar Survey—A Case Study of a Small Catchment in the Upper Reaches of the Yellow River, Northeastern Qinghai–Tibet Plateau. Remote Sens. 2022, 14, 2450. https://doi.org/10.3390/rs14102450
Liu G, Zhao L, Xie C, Zou D, Wu T, Du E, Wang L, Sheng Y, Zhao Y, Xiao Y, et al. The Zonation of Mountain Frozen Ground under Aspect Adjustment Revealed by Ground-Penetrating Radar Survey—A Case Study of a Small Catchment in the Upper Reaches of the Yellow River, Northeastern Qinghai–Tibet Plateau. Remote Sensing. 2022; 14(10):2450. https://doi.org/10.3390/rs14102450
Chicago/Turabian StyleLiu, Guangyue, Lin Zhao, Changwei Xie, Defu Zou, Tonghua Wu, Erji Du, Lingxiao Wang, Yu Sheng, Yonghua Zhao, Yao Xiao, and et al. 2022. "The Zonation of Mountain Frozen Ground under Aspect Adjustment Revealed by Ground-Penetrating Radar Survey—A Case Study of a Small Catchment in the Upper Reaches of the Yellow River, Northeastern Qinghai–Tibet Plateau" Remote Sensing 14, no. 10: 2450. https://doi.org/10.3390/rs14102450
APA StyleLiu, G., Zhao, L., Xie, C., Zou, D., Wu, T., Du, E., Wang, L., Sheng, Y., Zhao, Y., Xiao, Y., Wang, C., & Wang, Y. (2022). The Zonation of Mountain Frozen Ground under Aspect Adjustment Revealed by Ground-Penetrating Radar Survey—A Case Study of a Small Catchment in the Upper Reaches of the Yellow River, Northeastern Qinghai–Tibet Plateau. Remote Sensing, 14(10), 2450. https://doi.org/10.3390/rs14102450