Land Cover Change Detection and Subsistence Farming Dynamics in the Fringes of Mount Elgon National Park, Uganda from 1978–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preparation
2.3. Image Processing and Classification Scheme
2.4. Landsat Image Classification and Accuracy Assessment
2.5. Change Detection and Land Cover Flows
3. Results
3.1. Accuracy Assessment of Land Cover Classification
3.2. Land Cover Change from 1978 to 2020
3.3. Change Detection and Land Cover Flows
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geist, H.; Lambin, F.E. Land Use and Land Cover Change: Local Processes and Global Impacts; Springer: Berlin, Germany, 2006; ISBN 9783540322016. [Google Scholar]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th ed.; John Wiley & Sons, Ltd.: Las Vegas, NV, USA, 2015; Volume 81, ISBN 9781118343289. [Google Scholar]
- Turner, B.L., II; Lambin, E.F.; Verburg, P.H. From land-use/land-cover to land system science: This article belongs to Ambio’s 50th Anniversary Collection. Theme: Agricultural land use. AMBIO 2021, 50, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.; Jashimuddin, M.; Nath, B.; Nath, T.K. Land use classification and change detection by using multi-temporal remotely sensed imagery: The case of Chunati wildlife sanctuary, Bangladesh. Egypt. J. Remote Sens. Sp. Sci. 2018, 21, 37–47. [Google Scholar] [CrossRef]
- Hailemariam, S.N.; Soromessa, T.; Teketay, D. Land Use and Land Cover Change in the Bale Mountain Eco-Region of Ethiopia during 1985 to 2015. Land 2016, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- MohanRajan, S.N.; Loganathan, A.; Manoharan, P. Survey on Land Use/Land Cover (LU/LC) change analysis in remote sensing and GIS environment: Techniques and Challenges. Environ. Sci. Pollut. Res. 2020, 27, 29900–29926. [Google Scholar] [CrossRef]
- Prakasam, C. Land use and land cover change detection through remote sensing approach: A case study of Kodaikanal taluk, Tamil nadu. Int. J. Geomat. Geosci. 2010, 1, 150–158. [Google Scholar]
- Maina, J.; Wandiga, S.; Gyampoh, B.; Charles, K. Assessment of Land Use and Land Cover Change Using GIS and Remote Sensing: A Case Study of Kieni, Central Kenya. J. Remote Sens. GIS 2020, 9, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Thakur, T.K.; Patel, D.K.; Bijalwan, A.; Dobriyal, M.J.; Kumar, A.; Thakur, A.; Bohra, A.; Bhat, J.A. Land use land cover change detection through geospatial analysis in an Indian Biosphere Reserve. Trees For. People 2020, 2, 100018. [Google Scholar] [CrossRef]
- Alijani, Z.; Hosseinali, F.; Biswas, A. Spatio-temporal evolution of agricultural land use change drivers: A case study from Chalous region, Iran. J. Environ. Manage. 2020, 262, 110326. [Google Scholar] [CrossRef]
- Geist, H.; McConnell, W.; Lambin, F.E.; Moran, E.; Alves, D.; Rudel, T. Causes and Trajectories of Land-Use/Cover Change. In Land-Use and Land-Cover Change; Local Processes and Global Impacts; Lambin, F.E., Geist, H., Eds.; Springer: Berlin, Germany, 2006; pp. 1–236. ISBN 3-540-32201-9. [Google Scholar]
- Druga, M.; Falťan, V. Influences of Environmental Drivers on Land Cover Structure and its Long-Term Changes: A Case Study of the Villages of Malachov and Podkonice in Slovakia. Morav. Geogr. Rep. 2014, 22, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate causes and underlying driving forces of tropical deforestation. Bioscience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Drivers of land use/land cover changes in Munessa-Shashemene landscape of the south-central highlands of Ethiopia. Environ. Monit. Assess. 2015, 187, 452. [Google Scholar] [CrossRef]
- Kleemann, J.; Baysal, G.; Bulley, H.N.N.; Fürst, C. Assessing driving forces of land use and land cover change by a mixed-method approach in north-eastern Ghana, West Africa. J. Environ. Manage. 2017, 196, 411–442. [Google Scholar] [CrossRef]
- Bekele, B.; Wu, W.; Yirsaw, E. Drivers of land use-land cover changes in the central rift valley of Ethiopia. Sains Malays. 2019, 48, 1333–1345. [Google Scholar] [CrossRef]
- Petursson, J.G.; Vedeld, P.; Sassen, M. An institutional analysis of deforestation processes in protected areas: The case of the transboundary Mt. Elgon, Uganda and Kenya. For. Policy Econ. 2013, 26, 22–33. [Google Scholar] [CrossRef]
- Kamwi, J.M.; Cho, M.A.; Kaetsch, C.; Manda, S.O.; Graz, F.P.; Chirwa, P.W. Assessing the spatial drivers of land use and land cover change in the protected and communal areas of the Zambezi Region, Namibia. Land 2018, 7, 131. [Google Scholar] [CrossRef] [Green Version]
- Singh, A. Review Articlel: Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Vivekananda, G.N.; Swathi, R.; Sujith, A.V.L.N. Multi-temporal image analysis for LULC classification and change detection. Eur. J. Remote Sens. 2020, 54, 189–199. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Meshesha, D.T.; Adgo, E.; Tsubo, M.; Masunaga, T.; Fenta, A.A.; Sultan, D.; Yibeltal, M. Exploring land use/land cover changes, drivers and their implications in contrasting agro-ecological environments of Ethiopia. Land Use Policy 2019, 87, 104052. [Google Scholar] [CrossRef]
- Fichera, C.R.; Modica, G.; Pollino, M. Land Cover classification and change-detection analysis using multi-temporal remote sensed imagery and landscape metrics. Eur. J. Remote Sens. 2012, 45, 1–18. [Google Scholar] [CrossRef]
- Cakir, H.I.; Khorram, S.; Nelson, S.A.C. Correspondence analysis for detecting land cover change. Remote Sens. Environ. 2006, 102, 306–317. [Google Scholar] [CrossRef]
- Hoyos, L.E.; Cabido, M.R.; Cingolani, A.M. A multivariate approach to study drivers of land-cover changes through remote sensing in the dry Chaco of Argentina. ISPRS Int. J. Geo-Inf. 2018, 7, 170. [Google Scholar] [CrossRef] [Green Version]
- Afify, H.A. Evaluation of change detection techniques for monitoring land-cover changes: A case study in new Burg El-Arab area. Alex. Eng. J. 2011, 50, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Forkuo, E.K.; Frimpong, A. Analysis of Forest Cover Change Detection. Int. J. Remote Sens. Appl. 2012, 2, 82–92. [Google Scholar]
- Liu, S.; Su, H.; Cao, G.; Wang, S.; Guan, Q. Learning from data: A post classification method for annual land cover analysis in urban areas. ISPRS J. Photogramm. Remote Sens. 2019, 154, 202–215. [Google Scholar] [CrossRef]
- Hishe, H.; Giday, K.; Van Orshoven, J.; Muys, B.; Taheri, F.; Azadi, H.; Feng, L.; Zamani, O.; Mirzaei, M.; Witlox, F. Analysis of Land Use Land Cover Dynamics and Driving Factors in Desa’a Forest in Northern Ethiopia. Land Use Policy 2020, 101, 105039. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens. 2015, 7, 153–168. [Google Scholar] [CrossRef]
- Karpatne, A.; Jiang, Z.; Raju Vatsavai, R.; Shekhar, S.; Kumar, V. Monitoring Land-Cover Changes: A machine-learning perspective. IEEE Geosci. Remote Sens. Lett. 2016, 4, 8–21. [Google Scholar] [CrossRef]
- Uganda Wildlife Authority (UWA). Mount Elgon National Park General Management Plan 2009–2019; Uganda Wildlife Authority (UWA): Kampala, Uganda, 2009. [Google Scholar]
- United Nations Environment Programme (UNEP). GEAS from hotspots to hopespots: Connecting local changes to global audiences. Environ. Dev. 2013, 8, 95–104. [Google Scholar] [CrossRef]
- Uganda Bureau of Statistics (UBOS). The National Population and Housing Census 2014, Area Specific Profile Series; Uganda Bureau of Statistics (UBOS): Kampala, Uganda, 2017. [Google Scholar]
- Nakileza, B.R. Rethinking the future of rural landscapes in relation to cities in the mountain regions of East Africa: Case of Mt Elgon in Uganda. In Rural-Urban Dynamics in the East African Mountains; Racaud, S., Nakileza, R.B., Bart, F., Eds.; Mkuki na Nyota Publishers: Dar es Salaam, Tanzania, 2016; pp. 91–112. ISBN 9782957305827. [Google Scholar]
- Sassen, M.; Sheil, D.; Giller, K.E. Fuelwood collection and its impacts on a protected tropical mountain forest in Uganda. For. Ecol. Manage. 2015, 354, 56–67. [Google Scholar] [CrossRef]
- Himmelfarb, D.; Cavanagh, C.J. Managing the contradictions: Conservation, communitarian rhetoric, and conflict at Mount Elgon National Park. In Conservation and Development in Uganda; Sandbrook, C., Cavanagh, C.J., Mwesigye, T.D., Eds.; Routledge: New York, NY, USA, 2018; pp. 85–103. ISBN 978-1-138-71092-4(hbk). [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. Global Deforestation Rates & Statistics by Country|GFW. Available online: http://www.globalforestwatch.org/dashboards/global/?category=summary&dashboardPrompts=eyJzaG93UHJvbXB0cyI6dHJ1ZSwicHJvbXB0c1ZpZXdlZCI6WyJ3aWRnZXRTZXR0aW5ncyJdLCJzZXR0aW5ncyI6eyJzaG93UHJvbXB0cyI6dHJ1ZSwicHJvbXB0c1ZpZXdlZCI6W10sInNldHRpbmdzIjp7Im9wZW4iOmZhb (accessed on 29 January 2021).
- Mugagga, F.; Kakembo, V.; Buyinza, M. Land use changes on the slopes of Mount Elgon and the implications for the occurrence of landslides Catena Land use changes on the slopes of Mount Elgon and the implications for the occurrence of landslides. Catena 2012, 90, 39–46. [Google Scholar] [CrossRef]
- Staudt, M.; Kuosmanen, E.; Babirye, P.; Lugaizi, I. The Bududa landslide of 1 March 2010; Geological Survey of Finland: Espoo, Finland, 2014; Volume 56. [Google Scholar]
- Bunyangha, J.; Majaliwa, M.J.G.; Muthumbi, A.W.; Gichuki, N.N.; Egeru, A. Past and future land use/land cover changes from multi-temporal Landsat imagery in Mpologoma catchment, eastern Uganda. Egypt. J. Remote Sens. Sp. Sci. 2021, 24, 675–685. [Google Scholar] [CrossRef]
- Broeckx, J.; Maertens, M.; Isabirye, M.; Vanmaercke, M.; Namazzi, B.; Deckers, J.; Tamale, J.; Jacobs, L.; Thiery, W.; Kervyn, M.; et al. Landslide susceptibility and mobilization rates in the Mount Elgon region, Uganda. Landslides 2019, 16, 571–584. [Google Scholar] [CrossRef]
- Bamutaze, Y.; Mukwaya, P.; Oyama, S.; Nadhomi, D.; Nsemire, P. Intersecting RUSLE modelled and farmers perceived soil erosion risk in the conservation domain on mountain Elgon in Uganda. Appl. Geogr. 2021, 126, 102366. [Google Scholar] [CrossRef]
- Wanyama, D.; Moore, N.J.; Dahlin, K.M. Persistent vegetation greening and browning trends related to natural and human activities in the mount Elgon ecosystem. Remote Sens. 2020, 12, 2113. [Google Scholar] [CrossRef]
- Mugagga, F.; Nagasha, B.; Barasa, B.; Buyinza, M. The Effect of Land Use on Carbon Stocks and Implications for Climate Variability on the Slopes of Mount Elgon, Eastern Uganda. Int. J. Reg. Dev. 2015, 2, 58. [Google Scholar] [CrossRef]
- Scott, P. From Conflict to Collaboration: People and Forests at Mount Elgon, Uganda; IUCN: Gland, Switzerland; Cambridge, UK, 1998; ISBN 2831703859. [Google Scholar]
- Vlaeminck, P.; Maertens, M.; Isabirye, M.; Vanderhoydonks, F.; Poesen, J.; Deckers, S.; Vranken, L. Coping with landslide risk through preventive resettlement. Designing optimal strategies through choice experiments for the Mount Elgon region, Uganda. Land Use Policy 2016, 51, 301–311. [Google Scholar] [CrossRef]
- Jiang, B.; Bamutaze, Y.; Pilesjö, P. Climate change and land degradation in Africa: A case study in the Mount Elgon region, Uganda. Geo-Spat. Inf. Sci. 2014, 17, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Bagoora, F.D.K. Soil Erosion and Mass Wasting Risk in the Highland Area of Uganda. Mt. Res. Dev. 1988, 8, 173–182. [Google Scholar] [CrossRef]
- Kitutu, M.G. Land Slide Occurences in the Hilly Areas of Bududa District and Their Causes. Ph.D. Thesis, Makerere University, Kampala, Uganda, 2010. [Google Scholar]
- Claessens, L.; Knapen, A.; Kitutu, M.G.; Poesen, J.; Deckers, J.A. Modelling landslide hazard, soil redistribution and sediment yield of landslides on the Ugandan footslopes of Mount Elgon. Geomorphology 2007, 90, 23–35. [Google Scholar] [CrossRef]
- Mugagga, F. Landuse Change, Landslide Occurrence and Livilihood Strategies on Mount Elgon Slopes, Eastern Uganda; Nelson Metropolitan University: Gqeberha, South Africa, 2011; Volume 11. [Google Scholar]
- Bamutaze, Y.; Tenywa, M.M.; Majaliwa, M.J.G.; Vanacker, V.; Bagoora, F.; Magunda, M.; Obando, J.; Wasige, J.E. Infiltration characteristics of volcanic sloping soils on Mt. Elgon, Eastern Uganda. CATENA 2010, 80, 122–130. [Google Scholar] [CrossRef]
- Bududa, D.L.G. Bududa District Local Government: Five-Year District Development Plan 2010/11 to 2014/15; National Planning Authority: Kampala, Uganda, 2010. [Google Scholar]
- Showstack, R. Landsat 9 Satellite Continues Half-Century of Earth Observations. Bioscience 2022, 72, 226–232. [Google Scholar] [CrossRef]
- Yang, Y.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.; Wang, Z. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GISci. Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- Alawadi, F. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI). In Remote Sensing of the Ocean, Sea Ice, and Large Water Regions 2010; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7825, p. 782506. [Google Scholar]
- Food and Agriculture Organization (FAO). Land Cover Classification System—Classification Concepts and Software Version 3; FAO: Rome, Italy, 2016; ISBN 978-92-5-109017-6. [Google Scholar]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Us with Remote Sensor Data. In Geological Survey Professional Paper; U.S Printing Office: Washington, DC, USA, 1983; p. 964. [Google Scholar]
- National Forestry Authority. National Biomass Study; Technical Report 2009; NFA: Kampala, Uganda, 2009; p. 109. [Google Scholar]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. remote sensing Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [Google Scholar]
- Alawamy, J.S.; Balasundram, S.K.; Hanif, A.H.M.; Sung, C.T.B. Detecting and analyzing land use and land cover changes in the Region of Al-Jabal Al-Akhdar, Libya using time-series landsat data from 1985 to 2017. Sustainability 2020, 12, 4490. [Google Scholar] [CrossRef]
- Gerard, F.; Petit, S.; Smith, G.; Thomson, A.; Brown, N.; Manchester, S.; Wadsworth, R.; Bugar, G.; Halada, L.; Bezák, P.; et al. Land cover change in Europe between 1950 and 2000 determined employing aerial photography. Prog. Phys. Geogr. 2010, 34, 183–205. [Google Scholar] [CrossRef] [Green Version]
- Sassen, M.; Sheil, D.; Giller, K.E.; Braak, C.J.F. ter Complex contexts and dynamic drivers: Understanding four decades of forest loss and recovery in an East African protected area. Biol. Conserv. 2013, 159, 257–268. [Google Scholar] [CrossRef]
- National Forestry Authority (NFA). Gazetted Areas GIS Database; National Forestry Authority (NFA): Kampala, Uganda, 2007. [Google Scholar]
- Pontius, R.G.G. Quantification error versus location error in comparison of categorical maps. Photogrametric Eng. Remote Sens. 2000, 66, 1011–1016. [Google Scholar]
- Sousa, S.; Caeiro, S.; Painho, M. Assessment of map similarity of categorical maps using kappa statistics; The Case of Sado Estuary. ISEGI 2002, 2, 2–7. [Google Scholar]
- Hailu, A.; Mammo, S.; Kidane, M. Dynamics of land use, land cover change trend and its drivers in Jimma Geneti District, Western Ethiopia. Land Use Policy 2020, 99, 105011. [Google Scholar] [CrossRef]
- Masaba, S.; Mungai, D.N.; Isabirye, M.; Nsubuga, H. Implementation of landslide disaster risk reduction policy in Uganda. Int. J. Disaster Risk Reduct. 2017, 24, 326–331. [Google Scholar] [CrossRef]
- Alam, A.; Bhat, M.S.; Maheen, M. Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal 2019, 85, 1529–1543. [Google Scholar] [CrossRef] [Green Version]
- Bantider, A.; Hurni, H.; Zeleke, G. Responses of rural households to the impacts of population and land-use changes along the Eastern Escarpment of Wello, Ethiopia. Nor. J. Geogr. 2011, 65, 42–53. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Zhu, G.; Zhou, H.; Yan, H.; Xue, P. Land use/land cover changes and their driving factors in the northeastern tibetan plateau based on geographical detectors and google earth engine: A case study in gannan prefecture. Remote Sens. 2020, 12, 3139. [Google Scholar] [CrossRef]
- Nakakaawa, C.; Moll, R.; Vedeld, P.; Sjaastad, E.; Cavanagh, J. Collaborative resource management and rural livelihoods around protected areas: A case study of Mount Elgon National Park, Uganda. For. Policy Econ. 2015, 57, 1–11. [Google Scholar] [CrossRef]
- Norgrove, L.; Hulme, D. Confronting conservation at Mount Elgon, Uganda. Dev. Chang. 2006, 37, 1093–1116. [Google Scholar] [CrossRef]
- Medard, C. ‘Indigenous’ land claims in Kenya: A case study of Chebyuk, Mount Elgon District. In The Struggle over Land in Africa: Conflicts, Politics and Change; Answeeuw, W., Alden, C., Eds.; Human Sciences Research Council: Cape Town, South Africa, 2010; ISBN 9780796923226. [Google Scholar]
- Himmelfarb, D. Moving people, moving boundaries: The socio-economic effects of protectionist conservation, involuntary resettlement and tenure insecurity on the edge of Mt. Elgon National Park. Agrofor. Landsc. Mosaics 2006, 7, 13. [Google Scholar]
- Shaban, K.S.; Okumu, J.O.; Paul, O.; Joseph, O. Assessing community-based organizations’ influence on trees and grass planting for forest, soil and water management around Mt. Elgon National Park in Uganda. For. Trees Livelihoods 2016, 25, 161–172. [Google Scholar] [CrossRef]
- Buyinza, J.; Nuberg, K.I.; Muthuri, W.C.; Denton, D.M. Farmers’ Knowledge and Perceptions of Management and the Impact of Trees on Farm in the Mt. Elgon Region. Small-Scale For. 2021, 21, 71–92. [Google Scholar] [CrossRef]
- Båtvik, S.T.; Kaboggoza, J.R.S.; Kabutha, C.; Vedeld, P. Mount Elgon Regional Ecosystem Conservation Programme (MERECP): Appraisal Report; Noragric, Centre for International Environment and Development Studies: Ås, Norway, 2002. [Google Scholar]
- Muhweezi, A.B.; Sikoyo, G.M.; Chemonges, M.M. Introducing a Transboundary Ecosystem Management Approach in the Mount Elgon Region: The need for strengthened institutional collaboration. Mt. Res. Dev. 2007, 27, 215–219. [Google Scholar] [CrossRef]
- FAO; UNEP. The State of World’s Forests 2020: Forests, Biodiversity and People; FAO: Rome, Italy, 2020. [Google Scholar]
- Kessler, C.A.; van Duivenbooden, N.; Nsabimana, F.; van Beek, C.L. Bringing ISFM to scale through an integrated farm planning approach: A case study from Burundi. Nutr. Cycl. Agroecosyst. 2016, 105, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Buyinza, J.; Nuberg, I.K.; Muthuri, C.W.; Denton, M.D. Assessing smallholder farmers’ motivation to adopt agroforestry using a multi-group structural equation modeling approach. Agrofor. Syst. 2020, 94, 2199–2211. [Google Scholar] [CrossRef]
Land Cover Class | Description |
---|---|
Built-Up | All built areas and artificially paved surfaces including (rural and urban) residential and service areas, industrial and commercial areas, transportation and communication routes, mine, dump, and construction sites, and green urban/mixed urban |
Agriculture | Area of land under seasonal and perennial (food or cash) crop cultivations: mixed farms of bananas, coffee, maize, beans, cabbages, and any other vegetables. |
Planted forest | Forests of planted broad-leaved woody trees and/or evergreen needle-shaped leaved trees with top layer trees <65% cover and second layer mixed with coffee and banana plants. Undergrowth of small trees, shrubs, and grasslands with Closed to Open cover of 40–100−40%, respectively. |
Bushland | Natural and human-planted vegetation dominated by undergrowth of thickets intermixed with a bunch of grasses growing together as an entity but not exceeding an average height of 4 m. |
Grassland | Extensively used grasslands with or without the presence of farm structures such as fences, shelters, enclosures, and watering places |
Bare and sparsely vegetated surfaces | Lands with exposed soil and sand, the vegetation cover never exceeds 10% during anytime of the year and stony (5–40%). Includes rock outcrops, bedrock exposures, and accumulation of rock without vegetation, cliffs, and active erosion surfaces. |
Shrubs | Mixture of perennial woody shrubs and dotted trees without any defined main stem being less than 5 m tall. The shrub foliage can be either evergreen or deciduous; with or without grass species. |
Tropical high forest low-stocked | Degraded or encroached part of the mixed natural forest with indigenous trees, top layer trees less than 20% cover, and second layer mixed with shrubs and bush, consisting of seasonal broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods. |
Tropical high forest well-stocked | Primary mixed natural forest with tree canopy >70%, almost all broadleaf trees remain green all year around. Well-stocked and canopy is never without green foliage. |
Class | Wi | Ui | Number of Validation Sites |
---|---|---|---|
Built-up area | 0.049 | 0.92 | 25 |
Agriculture | 0.300 | 0.83 | 102 |
Planted forest | 0.059 | 0.92 | 30 |
Bushland | 0.020 | 0.88 | 20 |
Grassland | 0.099 | 0.95 | 40 |
Bare and sparsely vegetated surfaces | 0.058 | 0.68 | 30 |
Shrub | 0.014 | 0.76 | 20 |
Tropical high forest low-stocked | 0.187 | 1.00 | 60 |
Tropical high forest well-stocked | 0.213 | 1.00 | 60 |
Total number of validation sites | 387 |
Year | 1978 | 1988 | 2001 | 2010 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Land Cover Classes | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA |
Built-Up | 86 | 79 | 89 | 82 | 78 | 81 | 84 | 85 | 87 | 88 |
Agriculture | 69 | 83 | 79 | 97 | 75 | 76 | 78 | 95 | 78 | 95 |
Planted forest | 73 | 88 | 92 | 80 | 91 | 86 | 95 | 92 | 96 | 100 |
Bushland | 79 | 77 | 90 | 75 | 75 | 82 | 83 | 97 | 85 | 97 |
Grassland | 79 | 80 | 89 | 84 | 83 | 99 | 87 | 88 | 92 | 93 |
Bare and sparsely vegetated surfaces | 73 | 87 | 94 | 93 | 74 | 74 | 96 | 93 | 100 | 93 |
Shrub | 91 | 97 | 87 | 75 | 81 | 83 | 92 | 75 | 95 | 84 |
Tropical high forest low-stocked | 68 | 66 | 91 | 95 | 92 | 71 | 100 | 94 | 100 | 94 |
Tropical high forest well-stocked | 76 | 98 | 76 | 99 | 90 | 98 | 93 | 99 | 93 | 100 |
Overall Accuracy | 84% | 86% | 87% | 89% | 90% |
Land Cover Class | Area (km2 and %) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1978 | 1988 | 2001 | 2010 | 2020 | ||||||
km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | |
Built-Up | 1.60 | 0.50 | 2.42 | 0.76 | 3.12 | 0.98 | 9.60 | 3.00 | 15.84 | 4.96 |
Agriculture | 33.95 | 10.63 | 52.69 | 16.49 | 56.18 | 17.58 | 91.72 | 28.71 | 97.22 | 30.43 |
Planted forest | 0.47 | 0.15 | 1.70 | 0.53 | 1.57 | 0.49 | 3.09 | 0.97 | 19.11 | 5.98 |
Bushland | 20.13 | 6.30 | 25.59 | 8.01 | 14.72 | 4.61 | 19.84 | 6.21 | 6.41 | 2.01 |
Grassland | 49.67 | 15.55 | 40.44 | 12.66 | 74.39 | 23.29 | 32.11 | 10.05 | 27.66 | 8.66 |
Bare and sparsely vegetated surfaces | 22.07 | 6.91 | 22.95 | 7.18 | 16.37 | 5.12 | 25.11 | 7.86 | 18.88 | 5.91 |
Shrubs | 24.52 | 7.67 | 12.20 | 3.82 | 27.02 | 8.46 | 7.69 | 2.41 | 4.66 | 1.46 |
Tropical high forest low-stocked | 27.67 | 8.66 | 37.79 | 11.83 | 20.64 | 6.46 | 50.06 | 15.67 | 60.56 | 18.96 |
Tropical high forest well-stocked | 139.41 | 43.64 | 123.69 | 38.72 | 105.48 | 33.02 | 80.27 | 25.12 | 69.13 | 21.64 |
Total | 319.48 | 100 | 319.48 | 100 | 319.48 | 100 | 319.48 | 100 | 319.48 | 100 |
Land Cover Class | Status | Area (km2) | Status | ||||
---|---|---|---|---|---|---|---|
1978 | 1978–1988 | 1988–2001 | 2001–2010 | 2010–2020 | 1978–2020 | 2020 | |
Built-up | 1.60 | 0.82 | 0.7 | 6.48 | 6.24 | 14.24 | 15.84 |
Agriculture | 33.95 | 18.74 | 3.49 | 35.54 | 5.50 | 63.27 | 97.22 |
Planted forest | 0.47 | 1.23 | −0.13 | 1.52 | 16.02 | 18.64 | 19.11 |
Bushland | 20.13 | 5.46 | −10.87 | 5.12 | −13.43 | −13.72 | 6.41 |
Grassland | 49.67 | −9.23 | 33.95 | −42.28 | −4.45 | −22.01 | 27.66 |
Bare and sparsely vegetated surfaces | 22.07 | 0.88 | −6.58 | 8.74 | −6.23 | −3.19 | 18.88 |
Shrubs | 24.52 | −12.32 | 14.82 | −19.33 | −3.03 | −19.86 | 4.66 |
Tropical high forest low-stocked | 27.67 | 10.12 | −17.15 | 29.42 | 10.50 | 32.89 | 60.56 |
Tropical high forest well-stocked | 139.41 | −15.72 | −18.21 | −25.21 | −11.14 | −70.28 | 69.13 |
Class | Innitial State—1978 (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
BU | AG | PF | BL | GL | BSVS | SH | TFLS | TFWS | ||
Final State 2020 (%) | BU | 46.45 | 13.63 | 4.09 | 7.97 | 9.4 | 1.79 | 6.75 | 5.26 | 0.16 |
AG | 39.92 | 72.71 | 88.51 | 62.85 | 53.54 | 6.38 | 53.21 | 43.28 | 4.52 | |
PF | 0.83 | 2.99 | 3.61 | 15.82 | 6.80 | 0.13 | 25.06 | 10.52 | 1.36 | |
BL | 0 | 0.02 | 0 | 1.74 | 0.04 | 0 | 1.96 | 6.86 | 2.56 | |
GL | 12.11 | 8.90 | 3.78 | 8.27 | 13.76 | 27.39 | 5.85 | 13.63 | 2.82 | |
BSVS | 0.70 | 1.74 | 0 | 0.08 | 8.45 | 60.96 | 1.03 | 0 | 0.37 | |
SH | 0 | 0.01 | 0 | 0.32 | 0.08 | 0 | 0.49 | 8.05 | 1.52 | |
TFLS | 0 | 0 | 0 | 2.95 | 0.22 | 0 | 0.09 | 8.92 | 41.20 | |
TFWS | 0 | 0 | 0 | 0 | 7.72 | 3.34 | 5.56 | 3.48 | 45.48 | |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Class Change | 53.56 | 27.29 | 96.38 | 98.26 | 86.25 | 39.03 | 99.51 | 91.08 | 54.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opedes, H.; Mücher, S.; Baartman, J.E.M.; Nedala, S.; Mugagga, F. Land Cover Change Detection and Subsistence Farming Dynamics in the Fringes of Mount Elgon National Park, Uganda from 1978–2020. Remote Sens. 2022, 14, 2423. https://doi.org/10.3390/rs14102423
Opedes H, Mücher S, Baartman JEM, Nedala S, Mugagga F. Land Cover Change Detection and Subsistence Farming Dynamics in the Fringes of Mount Elgon National Park, Uganda from 1978–2020. Remote Sensing. 2022; 14(10):2423. https://doi.org/10.3390/rs14102423
Chicago/Turabian StyleOpedes, Hosea, Sander Mücher, Jantiene E. M. Baartman, Shafiq Nedala, and Frank Mugagga. 2022. "Land Cover Change Detection and Subsistence Farming Dynamics in the Fringes of Mount Elgon National Park, Uganda from 1978–2020" Remote Sensing 14, no. 10: 2423. https://doi.org/10.3390/rs14102423
APA StyleOpedes, H., Mücher, S., Baartman, J. E. M., Nedala, S., & Mugagga, F. (2022). Land Cover Change Detection and Subsistence Farming Dynamics in the Fringes of Mount Elgon National Park, Uganda from 1978–2020. Remote Sensing, 14(10), 2423. https://doi.org/10.3390/rs14102423