Estimation of Pb Content Using Reflectance Spectroscopy in Farmland Soil near Metal Mines, Central China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Sampling and Laboratory Analysis
2.2.2. Data for Soil Properties
2.2.3. Spectral Measurement and Preprocessing
2.3. Spectral Bands Extraction and Modelling
2.4. PLSR Modelling and Validation
2.5. Ordinary Kriging
3. Results
3.1. Sensitive Bands
3.2. Model Construction and Validation
3.3. Optimization of Model
3.4. Spatial Distribution of Soil Pb Contamination
4. Discussion
4.1. Selection of Sensitive Bands
4.2. Mineralogy of Samples
4.3. Impact of Topography and other Factors
4.4. Accuracy and Adaptability of the Prediction Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Sci. Total Environ. 2020, 747, 141293. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Ren, B.; Hursthouse, A.S.; Thacker, J.R.M.; Wang, Z. Soil from an Abandoned Manganese Mining Area (Hunan, China): Significance of Health Risk from Potentially Toxic Element Pollution and Its Spatial Context. Int. J. Environ. Res. Public Health 2020, 17, 6554. [Google Scholar] [CrossRef] [PubMed]
- Fashola, M.O.; Ngole-Jeme, V.M.; Babalola, O.O.; Naeth, M.A. Physicochemical properties, heavy metals, and metal-tolerant bacteria profiles of abandoned gold mine tailings in Krugersdorp, South Africa. Can. J. Soil Sci. 2020, 100, 217–233. [Google Scholar] [CrossRef]
- Kabala, C.; Singh, B.R. Fractionation and Mobility of Copper, Lead, and Zinc in Soil Profiles in the Vicinity of a Copper Smelter. J. Environ. Qual. 2001, 30, 485–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Tao, L.; Liu, X.; Hou, J.; Wang, A.; Li, R. Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China. J. Geochem. Explor. 2013, 132, 156–163. [Google Scholar] [CrossRef]
- Sawut, R.; Kasim, N.; Abliz, A.; Hu, L.; Yalkun, A.; Maihemuti, B.; Qingdong, S. Possibility of optimized indices for the assessment of heavy metal contents in soil around an open pit coal mine area. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 14–25. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, Y.; Zheng, C.; An, C.; Mi, Z. Spatial distribution, source identification, and risk assessment of heavy metals in the soils from a mining region: A case study of Bayan Obo in northwestern China. Hum. Ecol. Risk Assess. Int. J. 2020, 27, 1276–1295. [Google Scholar] [CrossRef]
- Kemper, T.; Sommer, S. Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environ. Sci. Technol. 2002, 36, 2742. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, J.; Zhu, C.; Wang, J. Combination of efficient signal pre-processing and optimal band combination algorithm to predict soil organic matter through visible and near-infrared spectra. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 240, 118553. [Google Scholar] [CrossRef]
- Leone, A.P.; Sommer, S. Multivariate Analysis of Laboratory Spectra for the Assessment of Soil Development and Soil Degradation in the Southern Apennines (Italy). Remote Sens. Environ. 2000, 72, 346–359. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using Imaging Spectroscopy to study soil properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Kim, H.; Yu, J.; Wang, L.; Jeong, Y.; Kim, J. Variations in Spectral Signals of Heavy Metal Contamination in Mine Soils Controlled by Mineral Assemblages. Remote Sens. 2020, 12, 3273. [Google Scholar] [CrossRef]
- Yin, F.; Wu, M.M.; Liu, L.; Zhu, Y.Q.; Feng, J.L.; Yin, D.W.; Yin, C.J.; Yin, C.T. Predicting the abundance of copper in soil using reflectance spectroscopy and GF5 hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 9. [Google Scholar] [CrossRef]
- Pandit, C.M.; Filippelli, G.M.; Li, L. Estimation of heavy-metal contamination in soil using reflectance spectroscopy and partial least-squares regression. Int. J. Remote Sens. 2010, 31, 4111–4123. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Wang, H.; Du, Y. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 199, 43–49. [Google Scholar] [CrossRef]
- Hong, Y.; Shen, R.; Cheng, H.; Chen, Y.; Zhang, Y.; Liu, Y.; Zhou, M.; Yu, L.; Liu, Y.; Liu, Y. Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest. Sci. Total Environ. 2019, 651, 1969–1982. [Google Scholar] [CrossRef]
- Xu, B.; Li, D.; Shi, X. A Preliminary Stndy on Identification of Clay Minerals in Soils with Reference to Reflectance Spectra. Pedosphere 1995, 5, 135–142. [Google Scholar]
- Komy, Z.R.; Shaker, A.M.; Heggy, S.E.; El-Sayed, M.E. Kinetic study for copper adsorption onto soil minerals in the absence and presence of humic acid. Chemosphere 2014, 99, 117–124. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, X. Estimating soil zinc concentrations using reflectance spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 126–133. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, K.; Zhao, A.; Chen, H.; Ke, H.; Liu, R. Heavy metal characteristics of stream sediments in the Xiaoqinling gold ore district. Geol. China 2013, 40, 602–611. [Google Scholar]
- Qiao, G.; Xu, Y.; Chen, H.; Zhang, J.; Hailing, K.; Liu, R.; Xian, L. Accumulation rate analysis of the heavy metal Pb in farmlandsoils of agold mining area. Geol. Bull. China 2014, 33, 1147–1153. [Google Scholar]
- Adhikari, T.; Singh, M.V. Sorption characteristics of lead and cadmium in some soils of India. Geoderma 2003, 114, 81–92. [Google Scholar] [CrossRef]
- Sipos, P.; Németh, T.; Mohai, I.; Dódony, I. Effect of soil composition on adsorption of lead as reflected by a study on a natural forest soil profile. Geoderma 2005, 124, 363–374. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.; Zha, Y. Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS J. Photogramm. Remote Sens. 2018, 136, 73–84. [Google Scholar] [CrossRef]
- Udelhoven, T.; Emmerling, C.; Jarmer, T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study. Plant Soil 2003, 251, 319–329. [Google Scholar] [CrossRef]
- Ren, H.; Zhuang, D.F.; Sing, A.N. Estimation of As and Cu Contamination in Agricultural Soils Around a Mining Area by Reflectance Spectroscopy: A Case Study. Pedosphere 2009, 19, 719–726. [Google Scholar] [CrossRef]
- Bai, L.; Wang, C.; Zang, S.; Zhang, Y.; Hao, Q.; Wu, Y. Remote Sensing of Soil Alkalinity and Salinity in the Wuyu’er-Shuangyang River Basin, Northeast China. Remote Sens. 2016, 8, 163. [Google Scholar] [CrossRef] [Green Version]
- Zhao, A. The Assessment of Contaminnation and Correlation on Heavy Metal Between Farmland and Crops in Tongguan Gold Mining Area in Shaanxi; Chang’an University: Xi’an, China, 2006. [Google Scholar]
- Chen, Y. The metallogenic model and exploration potential of orogenic-type deposits. Geol. China 2006, 33, 1181–1196. [Google Scholar]
- Zhang, J.; Zhao, A.; Wang, Z.; Chen, H.; Ke, H. Discussion on the differences of heavy metals contamination in soil assessment with Nemerou index and geo-accumulation index—With Xiaoqinling gold belt as example. Gold 2010, 31, 50–53. [Google Scholar]
- Olympus, N.I. DELTA Professional Limits of Detection (LOD) for Soil Samples. Available online: www.olympus-ims.com (accessed on 23 June 2013).
- Lu, A.X.; Qin, X.Y.; Wang, J.H.; Sun, J.; Zhu, D.Z.; Pan, L.G. Determination of Cr, Zn, As and Pb in Soil by X-Ray Fluorescence Spectrometry Based on a Partial Least Square Regression Model. In Proceedings of the 4th IFIP TC 12 Conference on Computer and Computing Technologies in Agriculture, Nanchang, China, 22–25 October 2010; p. 563. [Google Scholar]
- Pozza, L.E.; Bishop, T.F.A.; Stockmann, U.; Birch, G.F. Integration of vis-NIR and pXRF spectroscopy for rapid measurement of soil lead concentrations. Soil Res. 2020, 58, 247. [Google Scholar] [CrossRef]
- Choe, E.; Kim, K.-W.; Bang, S.; Yoon, I.-H.; Lee, K.-Y. Qualitative analysis and mapping of heavy metals in an abandoned Au–Ag mine area using NIR spectroscopy. Environ. Geol. 2008, 58, 477–482. [Google Scholar] [CrossRef]
- Al Maliki, A.; Owens, G.; Hussain, H.M.; Al-Dahaan, S.; Al-Ansari, N. Chemometric Methods to Predict of Pb in Urban Soil from Port Pirie, South Australia, using Spectrally Active of Soil Carbon. Commun. Soil Sci. Plant Anal. 2018, 49, 1370–1383. [Google Scholar] [CrossRef] [Green Version]
- Wold, S.; Sjostrom, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Sun, W.C.; Skidmore, A.K.; Wang, T.J.; Zhang, X. Heavy metal pollution at mine sites estimated from reflectance spectroscopy following correction for skewed data. Environ. Pollut. 2019, 252, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, G.L.; Song, X.D.; Li, D.C.; Zhao, Y.G.; Yang, J.L.; Wu, H.Y.; Yang, F. High-resolution and three-dimensional mapping of soil texture of China. Geoderma 2020, 361, 20. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.Y.; Zhao, Y.G.; Li, D.C.; Yang, J.L.; Song, X.D.; Shi, Z.; Zhu, A.X.; Zhang, G.L. Mapping high resolution National Soil Information Grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K.; Prins, H.H.T. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sens. Environ. 2004, 89, 393–408. [Google Scholar] [CrossRef]
- Rodger, A.; Cudahy, T. Vegetation corrected continuum depths at 2.20 µm: An approach for hyperspectral sensors. Remote Sens. Environ. 2009, 113, 2243–2257. [Google Scholar] [CrossRef]
- Larar, A.M.; Ding, Y.; Li, M.; Zheng, L.; Sun, H.; Chung, H.-S.; Suzuki, M.; Wang, J.-Y. Estimation of tomato leaf nitrogen content using continuum-removal spectroscopy analysis technique. In Proceedings of the SPIE Asia-Pacific Remote Sensing, Kyoto, Japan, 29 October–1 November 2012. [Google Scholar]
- Guo, J.B.; Zhang, J.J.; Xiong, S.P.; Zhang, Z.Y.; Wei, Q.Q.; Zhang, W.; Feng, W.; Ma, X.M. Hyperspectral assessment of leaf nitrogen accumulation for winter wheat using different regression modeling. Precis. Agric. 2021, 22, 1634–1658. [Google Scholar] [CrossRef]
- Linke, A.C.; Mash, L.E.; Fong, C.H.; Kinnear, M.K.; Kohli, J.S.; Wilkinson, M.; Tung, R.; Keehn, R.J.J.; Carper, R.A.; Fishman, I.; et al. Dynamic time warping outperforms Pearson correlation in detecting atypical functional connectivity in autism spectrum disorders. Neuroimage 2020, 223, 117383. [Google Scholar] [CrossRef]
- HöSkuldsson, A. PLS regression methods. J. Chemom. 1988, 2, 211–228. [Google Scholar] [CrossRef]
- Abu Bakkar, M.; Nawaz, H.; Majeed, M.I.; Naseem, A.; Ditta, A.; Rashid, N.; Ali, S.; Bajwa, J.; Bashir, S.; Ahmad, S.; et al. Raman spectroscopy for the qualitative and quantitative analysis of solid dosage forms of Sitagliptin. Spectroc. Acta Part A Mol. Biomol. Spectr. 2021, 245, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, Q.; Yan, H.; Zhang, G. A Principal Components Selection Method Based on the Modified Randomization Test for Avoiding Over-Fit and Under-Fit in Spectra Calibration. Spectrosc. Spectr. Anal. 2010, 30, 3041–3046. [Google Scholar]
- Martens, H.; Geladi, P. Multivariate Calibration; Chemometrics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1984. [Google Scholar]
- Wang, H. Partial Least-Squares Regression-Method and Applications; National Defense Industry Press: Virginia, VA, USA, 1999. [Google Scholar]
- Wold, S.; Eriksson, L. The PLS method-partial least squares projections to latent structures-and its applications in industrial RDP (research, development, and production). Wiley Interdiscip. Rev. 2004, 2, 97–106. [Google Scholar]
- Ng, W.; Minasny, B.; Malone, B.P.; Sarathjith, M.C.; Das, B.S. Optimizing wavelength selection by using informative vectors for parsimonious infrared spectra modelling. Comput. Electron. Agric. 2019, 158, 201–210. [Google Scholar] [CrossRef]
- Rossel, R.A.V.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Kuang, B.; De Baerdemaeker, J.; Ramon, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 2010, 158, 23–31. [Google Scholar] [CrossRef]
- Da Silveira, H.L.F.; Galvao, L.S.; Sanches, I.D.; de Sa, I.B.; Taura, T.A. Use of MSI/Sentinel-2 and airborne LiDAR data for mapping vegetation and studying the relationships with soil attributes in the Brazilian semi-arid region. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 179–190. [Google Scholar] [CrossRef]
- Bostan, P.A.; Heuvelink, G.B.M.; Akyurek, S.Z. Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 115–126. [Google Scholar] [CrossRef]
- Lloyd, C.D. Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J. Hydrol. 2005, 308, 128–150. [Google Scholar] [CrossRef]
- Baltas, H.; Yesilkanat, C.M.; Kiris, E.; Sirin, M. A study of the radiological baseline conditions around the planned Sinop (Turkey) nuclear power plant using the mapping method. Environ. Monit. Assess. 2019, 191, 14. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Rivard, B. Hierarchical Band Selection Using the N-Dimensional Solid Spectral Angle Method to Address Inter- and Intra- Class Spectral Variability. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Long, Y.; Rivard, B.; Rogge, D.; Tian, M. Hyperspectral band selection using the N-dimensional Spectral Solid Angle method for the improved discrimination of spectrally similar targets. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 35–47. [Google Scholar] [CrossRef]
- Clark, R.N. Spectroscopy of rocks and minerals, and principles of spectroscopy. Remote Sens. Earth Sci. Man. Remote Sens. 1999, 3, 3–58. [Google Scholar]
- Duke, E.F.; Lewis, R.S. Near infrared spectra of white mica in the Belt Supergroup and implications for metamorphism. Am. Miner. 2010, 95, 908–920. [Google Scholar] [CrossRef]
- Zachara, J.M.; Cowan, C.E.; Resch, C.T. Sorption of Divalent Metals on Calcte. Geochim. Cosmochim. Acta 1991, 55, 1549–1562. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.G.; Kim, M.-S.; Hong, S.C. Adsorption Characteristics of Pb(II) on Calcite-Type Calcium Carbonate by Batch and Continuous Reactors. J. Ind. Eng. Chem. 2002, 8, 305–312. [Google Scholar]
- Lara, R.H.; Briones, R.; Monroy, M.G.; Mullet, M.; Humbert, B.; Dossot, M.; Naja, G.M.; Cruz, R. Galena weathering under simulated calcareous soil conditions. Sci. Total Environ. 2011, 409, 3971–3979. [Google Scholar] [CrossRef]
- Ag, A.; Ms, B.; Bd, C.; Ravr, D.; Lb, A. Modelling potentially toxic elements in forest soils with vis–NIR spectra and learning algorithms. Environ. Pollut. 2020, 267, 115574. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, K.; Li, H.; Chen, H.; Hailing, K.; Liu, R.; Zhao, A. Factors affecting bioavailability of heavy metal elements Pb and Cd in soil of the Tongguan gold ore district and their significance. Geol. Bull. China 2014, 33, 1188–1195. [Google Scholar]
- Shand, C.A.; Cheshire, M.V.; Smith, S.; Vidal, M.; Rauret, G. Distribution of radiocaesium in organic soils. J. Environ. Radioact. 1994, 23, 285–302. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Saberioon, M.; Rossel, R.A.V.; Boruvka, L.; Klement, A. Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon. Geoderma 2020, 357, 113972. [Google Scholar] [CrossRef]
Number | Range | Mean | Skewness | Kurtosis | CV 1 | SD 2 | RSV 3 | RCV 4 | SBV 5 | |
---|---|---|---|---|---|---|---|---|---|---|
Pb | 115 | 16.60–4505.00 | 487.08 | 3.04 | 10.11 | 1.67 | 816.68 | 170 | 1000 | 16.30 |
ln(Pb) | 115 | 2.80–8.41 | 5.25 | 0.28 | −0.48 | 0.26 | 1.36 | 5.14 | 6.91 | 2.79 |
CSF 1/k 2 | RSF 3 | COR 4 | RSB 5 | SB 6 |
---|---|---|---|---|
525 | 450–600 | 450–575 | 450–575 | 522, 575 |
719 | 710–724 | 716–1316 | 710–724 | 719 |
727 | 724–728 | 1343–1677 | 724–728 | |
730 | 728–735 | 1710–1714 | 728–735 | |
784 | 780–790 | 1721–1736 | 780–790 | 780, 784, 788 |
848 | 820–860 | 1768–1795 | 820–860 | 825, 836, 848 |
900 | 860–950 | 1826–2103 | 860–950 | 865, 900, 940 |
1016 | 1010–1024 | 2137–2181 | 1010–1024 | 1016 |
1126 | 1120–1132 | 2197–2220 | 1120–1132 | 1126 |
1357 | 1350–1368 | 2250–2317 | 1350–1368 | 1357, 1368 |
1780 | 1745–1820 | 2332–2356 | 1655–1675 | 1655, 1668, 1675 |
1868 | 1850–1875 | 2371–2387 | 1768–1795 | 1768, 1780, 1795 |
2207 | 2150–2235 | 2394–2410 | 1850–1875 | 1857, 1868 |
2250 | 2240–2265 | 2150–2181 | 2160 | |
2296 | 2280–2305 | 2197–2220 | 2207 | |
2345 | 2310–2360 | 2250–2265 | 2250, 2264 | |
2280–2305 | 2280, 2296 | |||
2310–2360 | 2345 |
Set | Number | Min | Max | Mean | |
---|---|---|---|---|---|
Pb (mg/kg) | Modeling | 88 | 16.60 | 4373.00 | 467.14 |
Validation | 27 | 16.60 | 4505.00 | 552.10 | |
ln(Pb) (ln(mg/kg)) | Modeling | 88 | 2.80 | 8.38 | 5.27 |
Validation | 27 | 2.81 | 8.41 | 5.20 |
ln(Pb) | CEC | SOC | pH | Fe | |
---|---|---|---|---|---|
ln(Pb) | 1.000 | 0.190 | 0.394 | −0.392 | 0.446 |
CEC | 1.000 | 0.695 | −0.770 | −0.399 | |
SOC | 1.000 | −0.772 | 0.495 | ||
pH | 1.000 | −0.478 | |||
Fe | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Xie, D.; Yin, F.; Liu, L.; Feng, J.; Ashraf, T. Estimation of Pb Content Using Reflectance Spectroscopy in Farmland Soil near Metal Mines, Central China. Remote Sens. 2022, 14, 2420. https://doi.org/10.3390/rs14102420
Zhao D, Xie D, Yin F, Liu L, Feng J, Ashraf T. Estimation of Pb Content Using Reflectance Spectroscopy in Farmland Soil near Metal Mines, Central China. Remote Sensing. 2022; 14(10):2420. https://doi.org/10.3390/rs14102420
Chicago/Turabian StyleZhao, Danyun, Danni Xie, Fang Yin, Lei Liu, Jilu Feng, and Tariq Ashraf. 2022. "Estimation of Pb Content Using Reflectance Spectroscopy in Farmland Soil near Metal Mines, Central China" Remote Sensing 14, no. 10: 2420. https://doi.org/10.3390/rs14102420
APA StyleZhao, D., Xie, D., Yin, F., Liu, L., Feng, J., & Ashraf, T. (2022). Estimation of Pb Content Using Reflectance Spectroscopy in Farmland Soil near Metal Mines, Central China. Remote Sensing, 14(10), 2420. https://doi.org/10.3390/rs14102420