A Dataset of Overshooting Cloud Top from 12-Year CloudSat/CALIOP Joint Observations
Abstract
:1. Introduction
2. CloudSat and CALIOP Data
3. Method
3.1. CloudSat/CALIOP-Based OT Detection Algorithm Description
3.2. The Identified OT Samples
4. Results Analysis and Validation
4.1. Results
4.2. Spatio-Temporal Distribution Characteristics of OT
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoeppe, P. Trends in weather related disasters-Consequences for insurers and society. Weather Clim. Extremes 2016, 11, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Negri, A.J.; Adler, R.F. Relation of Satellite-Based Thunderstorm Intensity to Radar-Estimated Rainfall. J. Appl. Meteorol. Climatol. 1981, 20, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Hung, R.; Smith, R. Satellite infrared imagery, rawinsonde data, and gravity wave remote sensing of severe convective storms. Int. J. Infrared Milli. 1982, 3, 489–502. [Google Scholar] [CrossRef]
- Marion, G.R.; Trapp, R.J.; Nesbitt, S.W. Using Overshooting Top Area to Discriminate Potential for Large, Intense Tornadoes. Geophys. Res. Lett. 2019, 46, 12520–12526. [Google Scholar] [CrossRef]
- Ziegler, C.L.; Macgorman, D.R. Observed Lightning Morphology Relative to Modeled Space Charge and Electric Field Distributions in a Tornadic Storm. J. Atmos. Sci. 1994, 51, 833–851. [Google Scholar] [CrossRef]
- Heymsfield, G.M.; Fulton, R.; Spinhirne, J.D. Aircraft Overflight Measurements of Midwest Severe Storms: Implications an Geosynchronous Satellite Interpretations. Mon. Weather Rev. 1991, 119, 436. [Google Scholar] [CrossRef]
- Reynolds, D.W. Observations of Damaging Hailstorms from Geosynchronous Satellite Digital Data. Mon. Weather Rev. 1980, 108, 337. [Google Scholar] [CrossRef]
- Bedka, K.M. Overshooting cloud top detections using MSG SEVIRI Infrared brightness temperatures and their relationship to severe weather over Europe. Atmos. Res. 2011, 99, 175–189. [Google Scholar] [CrossRef]
- Machado, L.; Lima, W.; Pinto, O., Jr.; Morales, C.A. Relationship between cloud-to-ground discharge and penetrative clouds: A multi-channel satellite application. Atmos. Res. 2009, 93, 304–309. [Google Scholar] [CrossRef]
- Berendes, T.A.; Mecikalski, J.R.; Mackenzie, W.M.; Bedka, K.M.; Nair, U.S. Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering. J. Geophys. Res. Atmos. 2008, 113, D20207. [Google Scholar] [CrossRef] [Green Version]
- Bedka, K.M.; Khlopenkov, K. A Probabilistic Multispectral Pattern Recognition Method for Detection of Overshooting Cloud Tops Using Passive Satellite Imager Observations. J. Appl. Meteorol. Climatol. 2016, 55, 1983–2005. [Google Scholar] [CrossRef]
- Lindsey, D.T.; Grasso, L. An Effective Radius Retrieval for Thick Ice Clouds Using GOES. J. Appl. Meteorol. Climatol. 2008, 47, 1222. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Woodley, W.L.; Lerner, A.; Kelman, G.; Lindsey, D.T. Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res. Atmos. 2008, 113, D04208. [Google Scholar] [CrossRef] [Green Version]
- Fritz, S.; Laszlo, I. Detection of water vapor in the stratosphere over very high clouds in the tropics. J. Geophys. Res. Atmos. 1993, 98, 22959–22967. [Google Scholar] [CrossRef]
- Ackerman, S.A. Global Satellite Observations of Negative Brightness Temperature Differences between 11 and 6.7 µm. J. Atmos. Sci. 1996, 53, 2803–2812. [Google Scholar] [CrossRef] [Green Version]
- Schmetz, J.; Tjemkes, S.A.; Gube, M.; Berg, L. Monitoring deep convection and convective overshooting with METEOSAT. Adv. Space Res. 1997, 19, 433–441. [Google Scholar] [CrossRef]
- Jurkovic, P.M.; Mahovic, N.S.; Pocakal, D. Lightning, overshooting top and hail characteristics for strong convective storms in Central Europe. Atmos. Res. 2015, 161, 153–168. [Google Scholar] [CrossRef]
- Setvak, M.; Rabin, R.M.; Wang, P.K. Contribution of the MODIS instrument to observations of deep convective storms and stratospheric moisture detection in GOES and MSG imagery. Atmos. Res. 2007, 83, 505–518. [Google Scholar] [CrossRef]
- Bedka, K.; Brunner, J.; Dworak, R.; Feltz, W.; Otkin, J.; Greenwald, T. Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J. Appl. Meteorol. Climatol. 2010, 49, 181–202. [Google Scholar] [CrossRef]
- Brunner, J.C.; Ackerman, S.A.; Bachmeier, A.S.; Rabin, R.M. A quantitative analysis of the enhanced-V feature. Weather Forecast. 2007, 22, 853–872. [Google Scholar] [CrossRef]
- Negri, A.J. Cloud-top structure of tornadic storms on 10 April 1979 from rapid scan and stereo satellite observations. Bull. Am. Meteorol. Soc. 1982, 63, 1151–1159. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.F.; Markus, M.J.; Fenn, D.D.; Szejwach, G.; Shenk, W.E. Thunderstorm top structure observed by aircraft overflights with an infrared radiometer. J. Appl. Meteorol. Climatol. 1983, 22, 579–593. [Google Scholar] [CrossRef] [Green Version]
- Bedka, K.M.; Minnis, P. GOES 12 observations of convective storm variability and evolution during the Tropical Composition, Clouds and Climate Coupling Experiment field program. J. Geophys. Res. Atmos. 2010, 115, D00J13. [Google Scholar] [CrossRef]
- Punge, H.; Bedka, K.; Kunz, M.; Werner, A. A new physically based stochastic event catalog for hail in Europe. Nat. Hazards 2014, 73, 1625–1645. [Google Scholar] [CrossRef]
- Dworak, R.; Bedka, K.; Brunner, J.; Feltz, W. Comparison between GOES-12 overshooting-top detections, WSR-88D radar reflectivity, and severe storm reports. Weather Forecast. 2012, 27, 684–699. [Google Scholar] [CrossRef] [Green Version]
- Bedka, K.M.; Dworak, R.; Brunner, J.; Feltz, W. Validation of Satellite-Based Objective Overshooting Cloud-Top Detection Methods Using CloudSat Cloud Profiling Radar Observations. J. Appl. Meteorol. Climatol. 2012, 51, 1811–1822. [Google Scholar] [CrossRef]
- Gettelman, A.; Salby, M.; Sassi, F. Distribution and influence of convection in the tropical tropopause region. J. Geophys. Res. Atmos. 2002, 107, ACL 6-1–ACL 6-12. [Google Scholar] [CrossRef]
- Dessler, A.E. The effect of deep, tropical convection on the tropical tropopause layer. J. Geophys. Res. Atmos. 2002, 107, ACH 6-1–ACH 6-5. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.K. Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res. Atmos. 2003, 108, 4194. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.K.; Setvák, M.; Lyons, W.; Schmid, W.; Lin, H.M. Further evidences of deep convective vertical transport of water vapor through the tropopause. Atmos. Res. 2009, 94, 400–408. [Google Scholar] [CrossRef]
- Riehl, H.; Malkus, J.S. On the heat balance in the equatorial trough zone. Geophysica 1958, 6, 503–538. [Google Scholar]
- Jiang, J.H.; Livesey, N.J.; Su, H.; Neary, L.; Mcconnell, J.C.; Richards, N. Connecting surface emissions, convective uplifting, and long-range transport of carbon monoxide in the upper troposphere: New observations from the Aura Microwave Limb Sounder. Geophy. Res. Lett. 2007, 34, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Luo, Z.J. Characterizing tropical overshooting deep convection from joint analysis of CloudSat and geostationary satellite observations. J. Geophys. Res. Atmos. 2014, 119, 112–121. [Google Scholar] [CrossRef]
- Kaltenböck, R.; Diendorfer, G.; Dotzek, N. Evaluation of thunderstorm indices from ECMWF analyses, lightning data and severe storm reports. Atmos. Res. 2009, 93, 381–396. [Google Scholar] [CrossRef] [Green Version]
- Kerr-Munslow, A.M.; Norton, W.A. Driving of The Annual Cycle In Lower-stratospheric Tropical Temperatures By Localised Breaking of Synoptic-scale Waves. In Proceedings of the EGS General Assembly Conference Abstracts, Nice, France, 21–26 April 2002. [Google Scholar]
- Setvák, M.; Bedka, K.; Lindsey, D.T.; Sokol, A.; Charvát, Z.; Šťástka, J.; Wang, P.K. A-Train observations of deep convective storm tops. Atmos. Res. 2013, 123, 229–248. [Google Scholar] [CrossRef]
- Reichler, T. Determining the tropopause height from gridded data. Geophy. Res. Lett. 2003, 30, ASC6-1–ASC6-5. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, D.P.; LeMone, M.A. Vertically Velocity Characteristics of Oceanic Convection. J. Atmos. Sci. 1989, 46, 621–640. [Google Scholar] [CrossRef] [Green Version]
- L’Ecuyer, T.S.; Berg, W.; Haynes, J.; Lebsock, M.; Takemura, T. Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds. J. Geophys. Res. Atmos. 2009, 114, D09211. [Google Scholar] [CrossRef] [Green Version]
- Albergel, C.; Dutra, E.; Munier, S.; Calvet, J.-C.; Munoz-Sabater, J.; de Rosnay, P.; Balsamo, G. ERA-5 and ERA-Interim driven ISBA land surface model simulations: Which one performs better? Hydrol. Earth Syst. Sci. 2018, 22, 3515–3532. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wei, X.; Min, M.; Li, B.; Nong, Z.; Chen, L. A Dataset of Overshooting Cloud Top from 12-Year CloudSat/CALIOP Joint Observations. Remote Sens. 2022, 14, 2417. https://doi.org/10.3390/rs14102417
Li H, Wei X, Min M, Li B, Nong Z, Chen L. A Dataset of Overshooting Cloud Top from 12-Year CloudSat/CALIOP Joint Observations. Remote Sensing. 2022; 14(10):2417. https://doi.org/10.3390/rs14102417
Chicago/Turabian StyleLi, Haoyang, Xiaocheng Wei, Min Min, Bo Li, Ziqi Nong, and Lin Chen. 2022. "A Dataset of Overshooting Cloud Top from 12-Year CloudSat/CALIOP Joint Observations" Remote Sensing 14, no. 10: 2417. https://doi.org/10.3390/rs14102417
APA StyleLi, H., Wei, X., Min, M., Li, B., Nong, Z., & Chen, L. (2022). A Dataset of Overshooting Cloud Top from 12-Year CloudSat/CALIOP Joint Observations. Remote Sensing, 14(10), 2417. https://doi.org/10.3390/rs14102417