Localized Downscaling of Urban Land Surface Temperature—A Case Study in Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. LST Retrieval
2.3.2. Random Forest Method
2.3.3. LST Upscaling
2.3.4. LST Downscaling
2.3.5. Metrics
- (1)
- Pearson correlation coefficient (Pearson’s R)
- (2)
- Root Mean Square Error (RMSE)
- (3)
- Kling Gupta coefficient (KGE)
3. Results and Discussion
3.1. Comparison of Global and Different Local Windows
3.2. Stepwise Downscaling of LST
3.3. Compound Effects of a Local Window and Stepwise Downscaling
3.4. Downscaling of Impervious Surfaces including Building Morphology
3.5. Scaling Effect of Building Morphology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duan, S.; Chen, R.; Zhaoliang, L.; Mengmeng, W.; Hanqiu, X.; Hua, L.; Penghai, W.; Wenfeng, Z.; Ji, Z.; Wei, Z.; et al. Reviews of methods for land surface temperature retrieval from Landsat thermal infrared data. Natl. Remote Sens. Bull. 2021, 25, 1591–1617. [Google Scholar] [CrossRef]
- Li, N.; Wu, H.; Luan, Q. Land surface temperature downscaling in urban area: A case study of Beijing. Natl. Remote Sens. Bull. 2021, 25, 1808–1820. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.; Li, Z.; Duan, S.; Qian, Y. Hyperspectral thermal infrared remote sensing: Current status and perspectives. Natl. Remote Sens. Bull. 2021, 25, 1567–1590. [Google Scholar] [CrossRef]
- Gao, L.; Zhan, W.; Huang, F.; Quan, J.; Lu, X.; Wang, F.; Ju, W.; Zhou, J. Localization or Globalization? Determination of the Optimal Regression Window for Disaggregation of Land Surface Temperature. IEEE Trans. Geosci. Remote Sens. 2017, 55, 477–490. [Google Scholar] [CrossRef]
- Li, W.; Ni, L.; Li, Z.L.; Duan, S.B.; Wu, H. Evaluation of Machine Learning Algorithms in Spatial Downscaling of MODIS Land Surface Temperature. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2299–2307. [Google Scholar] [CrossRef]
- Dominguez, A.; Kleissl, J.; Luvall, J.C.; Rickman, D.L. High-resolution urban thermal sharpener (HUTS). Remote Sens. Environ. 2011, 115, 1772–1780. [Google Scholar] [CrossRef] [Green Version]
- Zakšek, K.; Oštir, K. Downscaling land surface temperature for urban heat island diurnal cycle analysis. Remote Sens. Environ. 2012, 117, 114–124. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Neale, C.M.U. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sens. Environ. 2007, 107, 545–558. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L. Spatial Downscaling of MODIS Land Surface Temperatures Using Geographically Weighted Regression: Case Study in Northern China. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6458–6469. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [Google Scholar] [CrossRef]
- Yin, Z.; Wu, P.; Foody, G.M.; Wu, Y.; Liu, Z.; Du, Y.; Ling, F. Spatiotemporal Fusion of Land Surface Temperature Based on a Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1808–1822. [Google Scholar] [CrossRef]
- Guo, L.J.; Moore, J.M. Pixel block intensity modulation: Adding spatial detail to TM band 6 thermal imagery. Int. J. Remote Sens. 1998, 19, 2477–2491. [Google Scholar] [CrossRef]
- Norman, J.M.; Anderson, M.C.; Kustas, W.P.; French, A.N.; Mecikalski, J.; Torn, R.; Diak, G.R.; Schmugge, T.J.; Tanner, B.C.W. Remote sensing of surface energy fluxes at 101-m pixel resolutions. Water Resour. Res. 2003, 39, 1221. [Google Scholar] [CrossRef] [Green Version]
- Merlin, O.; Al Bitar, A.; Walker, J.P.; Kerr, Y. An improved algorithm for disaggregating microwave-derived soil moisture based on red, near-infrared and thermal-infrared data. Remote Sens. Environ. 2010, 114, 2305–2316. [Google Scholar] [CrossRef] [Green Version]
- Mpelasoka, F.S.; Mullan, A.B.; Heerdegen, R.G. New Zealand climate change information derived by multivariate statistical and artificial neural networks approaches. Int. J. Climatol. 2001, 21, 1415–1433. [Google Scholar] [CrossRef]
- Gualtieri, J.A.; Chettri, S. Support vector machines for classification of hyperspectral data. In Proceedings of the IGARSS 2000, IEEE 2000 International Geoscience and Remote Sensing Symposium, Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Proceedings (Cat. No.00CH37120), Honolulu, HI, USA, 24–28 July 2000; Volume 812, pp. 813–815. [Google Scholar]
- Hutengs, C.; Vohland, M. Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens. Environ. 2016, 178, 127–141. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, C.; Pan, X.; Li, X.; Zhu, X. Downscaling Land Surface Temperature in an Arid Area by Using Multiple Remote Sensing Indices with Random Forest Regression. Remote Sens. 2017, 9, 789. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, X.; Cao, C. Downscaling urban land surface temperature based on multi-scale factor. Sci. Surv. Mapp. 2017, 42, 73–79. [Google Scholar] [CrossRef]
- Zhu, X.; Song, X.; Leng, P.; Hu, R. Spatial downscaling of land surface temperature with the multi-scale geographically weighted regression. Natl. Remote Sens. Bull. 2021, 25, 1749–1766. [Google Scholar] [CrossRef]
- Yu, H.; Fotheringham, A.S.; Li, Z.; Oshan, T.; Kang, W.; Wolf, L.J. Inference in Multiscale Geographically Weighted Regression. Geogr. Anal. 2020, 52, 87–106. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Li, N.; Yang, J.; Qiao, Z.; Wang, Y.; Miao, S. Urban Thermal Characteristics of Local Climate Zones and Their Mitigation Measures across Cities in Different Climate Zones of China. Remote Sens. 2021, 13, 1468. [Google Scholar] [CrossRef]
- Liang, C.; Ng, E.; An, X.; Chao, R.; Lee, M.; Wang, U.; He, Z. Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. Int. J. Climatol. 2012, 32, 121–136. [Google Scholar] [CrossRef]
- Du, C.; Ren, H.; Qin, Q.; Meng, J.; Zhao, S. A Practical Split-Window Algorithm for Estimating Land Surface Temperature from Landsat 8 Data. Remote Sens. 2015, 7, 647. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zhu, S.; Yu, F.; Zhang, G.; Xu, Y. A downscaling method for ERA5 reanalysis land surface temperature over urban and mountain areas. Natl. Remote Sens. Bull. 2021, 25, 1778–1791. [Google Scholar] [CrossRef]
- Long, L.; Li, J.; Chen, Y.; Xia, H.; Chen, Q. An Auto-Adjusted Kernel Method for Thermal Sharpening with Local and Object-Based Window Strategies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3659–3668. [Google Scholar] [CrossRef]
- Pu, R.L. Assessing scaling effect in downscaling land surface temperature in a heterogenous urban environment. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102256. [Google Scholar] [CrossRef]
Number | Method | Description |
---|---|---|
1 | statistical regression algorithm-based | This applies the relationships between LST and land surface properties (e.g., normalized difference vegetation index (NDVI), normalized difference building index (NDBI), leaf area index (LAI)) at a high resolution to a low resolution, with the assumption of fixed relationships being preserved from high to low resolution [6,7,8,9] |
2 | image fusion-based | This brings abundant spatial information from high-resolution images into low-resolution images using a fusion technique. Examples include the spatial and temporal adaptive reflectance fusion model (STARFM; [10]), enhanced spatial and temporal adaptive reflectance fusion model (ESTARRM; [11]), spatiotemporal adaptive data fusion algorithm for temperature mapping (SADFAT; [12], and deep learning-based spatiotemporal temperature fusion network (STTFN; [13]). |
3 | modulation distribution-based | This reassigns the grid LST at a low resolution into sub-grids according to weights, using visible and other high-resolution bands. Examples include a pixel block intensity modulation (PBIM) [14] and a disaggregated atmosphere-land and exchange inversion model (DisALEXI) [15]. |
4 | linear spectral mixture model-based | This develops the relationships of LSTs at high and low resolutions based on a linear mixed spectral model [16]. |
Data Type | Data Resource | Spatial Resolution |
---|---|---|
Land surface temperature | Landsat 8 (http://earthexplorer.usgs.gov/, accessed on 12 October 2021) | 30 m |
Spectral reflectance | Landsat 8 | 30 m |
DEM | SRTM1 (http://gdex.cr.usgs.gov/gdex/, accessed on 12 October 2021) | 30 m |
Building boundary and floor numbers | Beijing Institute of Surveying and Mapping | Vector data |
Parameter | Full Name | Algorithm | |
---|---|---|---|
1. Spectral indices | NDVI | Normalized difference vegetation index | where ρ is band reflectance. |
NDMI | Normalized difference moisture index | ||
NDBI | Normalized difference building index | ||
MNDWI | Modified normalized difference water index | ||
NDDI | Normalized difference desert index | ||
NMDI | Normalized multiband drought index | ||
2. Building morphology indices | Height | Mean building height | where, Hi is the ith building height, Ai is the plan area of building i, and n is the total number of buildings in one pixel. |
Density | Mean building density | where, Ai is the plan area of building i, Apixel is the pixel size, and n is the total number of buildings in one pixel. | |
SVF | Sky view factor | where, γi is the influence of terrain elevation angle of the ith azimuth angle with unit of radians, m is the number of azimuth angles (m = 36 herein). SVF = 0 means the sky is totally covered. SVF = 1 means the sky is totally open [26]. | |
λB | Building surface area to plan area ratio | where, Ar,i and Aw,i are the roof area and the area of all walls of building i, respectively. | |
FAR | Floor area ratio | where, Ai is the plan area of building i, Apixel is the pixel size, n is the total number of buildings in one pixel, and N is the number of floors of building i. |
Window Size | Range (K) | Difference (K) |
---|---|---|
3 × 3 | 276–296 | 20 |
5 × 5 | 277–296 | 19 |
7 × 7 | 277–296 | 19 |
11 × 11 | 278–296 | 18 |
Global window | 281–293 | 12 |
LST (1080 m resolution) | 278–294 | 16 |
Downscaling Approach | Pearson’s R | RMSE (K) | KGE |
---|---|---|---|
Step-by-step (1080–540–90 m) | 0.68 | 3.04 | 0.54 |
Single-step (1080–90 m) | 0.59 | 3.3 | 0.28 |
Downscaling Approach | Pearson’s R | RMSE (K) | KGE |
---|---|---|---|
Step-by-step (1080–540–90 m) | 0.89 | 1.72 | 0.75 |
Single step (1080–90 m) | 0.88 | 1.7 | 0.78 |
Windows | Pearson’s R | RMSE (K) | KGE |
---|---|---|---|
(7 × 7) + (7 × 7) | 0.89 | 1.72 | 0.75 |
(7 × 7) + (5 × 5) | 0.89 | 1.71 | 0.73 |
(7 × 7) + (3 × 3) | 0.89 | 1.74 | 0.71 |
Windows | Pearson’s R | RMSE (K) | KGE |
---|---|---|---|
3 × 3 | 0.6 | 1.17 | 0.28 |
5 × 5 | 0.58 | 1.19 | 0.25 |
7 × 7 | 0.56 | 1.21 | 0.39 |
11 × 11 | 0.54 | 1.23 | 0.39 |
Global window | 0.6 | 1.16 | 0.38 |
Windows | Range (K) | Difference (K) |
---|---|---|
3 × 3 | 288.4–293.9 | 5.5 |
5 × 5 | 288.5–293.7 | 5.2 |
7 × 7 | 288.4–294 | 5.6 |
11 × 11 | 288.6–294 | 5.4 |
Global window | 287.6–293.5 | 5.9 |
LST at 1080 m | 288.8–293.4 | 4.6 |
Predictors | 1080 m | 90 m |
---|---|---|
Spectral reflectance, spectral indices, and DEM | 0.44 | 0.35 |
Spectral reflectance, spectral indices, DEM, and building morphology indices | 0.46 | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Wu, H.; Ouyang, X. Localized Downscaling of Urban Land Surface Temperature—A Case Study in Beijing, China. Remote Sens. 2022, 14, 2390. https://doi.org/10.3390/rs14102390
Li N, Wu H, Ouyang X. Localized Downscaling of Urban Land Surface Temperature—A Case Study in Beijing, China. Remote Sensing. 2022; 14(10):2390. https://doi.org/10.3390/rs14102390
Chicago/Turabian StyleLi, Nana, Hua Wu, and Xiaoying Ouyang. 2022. "Localized Downscaling of Urban Land Surface Temperature—A Case Study in Beijing, China" Remote Sensing 14, no. 10: 2390. https://doi.org/10.3390/rs14102390
APA StyleLi, N., Wu, H., & Ouyang, X. (2022). Localized Downscaling of Urban Land Surface Temperature—A Case Study in Beijing, China. Remote Sensing, 14(10), 2390. https://doi.org/10.3390/rs14102390