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Abstract: High-resolution land surface temperature (LST) data are essential for fine-scale urban
thermal environment studies. Urban LST downscaling studies mostly remain focused on only two-
dimensional (2-D) data, and neglect the impact of three-dimensional (3-D) surface structure on LST.
In addition, the choice of window size is also important for LST downscaling over heterogeneous
surfaces. In this study, we downscaled Landsat-LST using localized and stepwise approaches in a
random forest model (RF). In addition, both 2- and 3-D building morphologies were included. Our
results show that: (1) The performances of a local moving window and stepwise downscaling are
dependent on the extent of surface heterogeneity. For mixed surfaces, a localized window performed
better than the global window, and a stepwise approach performed better than a single-step approach.
However, for monotonous surfaces (e.g., urban impervious surfaces), the global window performed
better than a localized window; (2) That multi-scale geographically weighted regression (MGWR)
could provide a possibility for selection of the optimal moving window. 7 × 7 windows derived
from MGWR by the minimum bandwidth of predictors, performed better than other windows (3 × 3,
5 × 5, and 11 × 11) in the Beijing area; (3) That the morphology of buildings has a non-negligible
impact and scaling effect on urban LST. When building morphologies were included in downscaling,
the performance of the RF model improved. Furthermore, the importance of the sky view factor,
building height, and building density was greater at a higher resolution than at a lower resolution.

Keywords: urban land surface temperature downscaling; random forest; building morphology;
optimal local-window size; stepwise downscaling; Beijing area

1. Introduction

Understanding the urban thermal environment on a fine scale is important for ur-
ban climate, urban planning, and urban meteorological disaster studies. Land surface
temperature (LST) is a vital parameter for urban thermal environment studies (e.g., the
urban heat island). However, urban surfaces are extremely complex, with varied surface
components and materials with different thermal properties. In addition, urban surfaces
contain complex three-dimensional (3-D) structures, which further exacerbate LST het-
erogeneity [1–3]. Satellite thermal remote sensing suffers from a tradeoff between the
spatial and temporal resolutions of LST, which greatly limits the application of LST in
urban systems. Downscaling is an effective method for obtaining higher spatiotemporal
resolutions from satellite-based LST [4,5].

Several previous studies have attempted to improve the spatial resolution of satellite-
based LST; these can be roughly divided into four categories based on their different
methodologies (Table 1).
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Table 1. The categories of satellite-based LST downscaling methods.

Number Method Description

1 statistical regression
algorithm-based

This applies the relationships between LST and land
surface properties (e.g., normalized difference

vegetation index (NDVI), normalized difference
building index (NDBI), leaf area index (LAI)) at a

high resolution to a low resolution, with the
assumption of fixed relationships being preserved

from high to low resolution [6–9]

2 image fusion-based

This brings abundant spatial information from
high-resolution images into low-resolution images

using a fusion technique. Examples include the
spatial and temporal adaptive reflectance fusion

model (STARFM; [10]), enhanced spatial and
temporal adaptive reflectance fusion model

(ESTARRM; [11]), spatiotemporal adaptive data
fusion algorithm for temperature mapping

(SADFAT; [12], and deep learning-based
spatiotemporal temperature fusion network

(STTFN; [13]).

3 modulation
distribution-based

This reassigns the grid LST at a low resolution into
sub-grids according to weights, using visible and
other high-resolution bands. Examples include a

pixel block intensity modulation (PBIM) [14] and a
disaggregated atmosphere-land and exchange

inversion model (DisALEXI) [15].

4 linear spectral mixture
model-based

This develops the relationships of LSTs at high and
low resolutions based on a linear mixed spectral

model [16].

Among these methods, statistical regression has been widely used owing to its ease of
manipulation and satisfactory accuracy. Machine learning algorithms (e.g., artificial neural
network (ANN), support vector machine (SVM), random forest (RF)) can simulate nonlin-
ear regression relationships between LST and related variables [17–19]. The RF method
performs best, having higher accuracy and faster arithmetic computation speed than the
ANN and SVM algorithms [5], and is more effective over heterogeneous regions [20]. In
addition, window size has a substantial impact on statistical regression; a local window
performs better than the global window for LST downscaling over mixed landcovers (e.g., a
mixture of urban, rural, and hills) [4]. However, determining the optimal window size
is not straightforward. Yang et al. (2017) [21] utilized a semi-variance curve function to
identify local window size. Gao et al. (2017) [4] used the resolution ratio of pre- and
post-downscaled LSTs as the optimal window size, and also compared this with the semi-
variance curve function; they showed that the resolution ratio was a better option because
it offered the best tradeoff between accuracy and computational complexity. However,
landcover properties (e.g., NDVI, NDBI, LAI) also affect window size selection, and the
resolution ratio approach does not address this point. Duan et al. (2016) [9] provided
a geographically weighted regression (GWR)-based local downscaling method, which
markedly improved accuracy. However, GWR assumes all surface properties perform at
the same spatial scale; in contrast, multi-scale geographically weighted regression (MGWR)
allows properties to perform at different spatial scales to meet an increased number of
physical conditions [22–24].

To the best of our knowledge, most previous studies have focused on natural surfaces,
and only a limited number of studies have involved urban LST downscaling. Further-
more, 2-D and 3-D building morphologies, which have an important impact on urban
surface thermal conditions [2,25], have rarely been considered in previous studies. The
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objectives of this study are to: (1) Identify the optimal moving window size for urban LST
downscaling based on the bandwidth of predictors using MGWR; (2) Perform stepwise
(1 km to 100 m) LST downscaling instead of using a single step; (3) Include 2-D and 3-D
building morphology parameters in the statistical regression and investigate the impact
of urban morphology on LST downscaling over an urban area. This study presents a new
methodology for urban LST downscaling and could provide an important data source for
higher-resolution urban thermal environment and climate studies.

2. Materials and Methods
2.1. Study Area

Beijing (39◦28′–41◦05′N, 115◦25′–117◦35′E) includes diverse land types and terrains,
with an average elevation of approximately 43.5 m. It has a typical continental monsoon
climate with an annual mean air temperature of 10–12 ◦C and mean annual precipitation of
450–550 mm. Herein, study area A is the Beijing city area. It contains four main types of
land cover: vegetation, cropland, impervious surfaces (buildings and roads), and water
(Figure 1a). The area is about 16,410 km2, and has a population of about 22 million. Study
area B comprises only the 5th ring of Beijing with an area of about 667 km2, covered almost
entirely by impervious surfaces with relatively flat topography (Figure 1b). The local
climate zones of the 5th ring of Beijing are classified by Landsat data, and there is less water
and vegetation in the 5th ring. Within the 2nd ring, it is covered mainly by compact midrise
and compact lowrise buildings. In the 3rd and 4th rings, there are mainly open buildings.
There are more trees and plants in the 4th–5th ring.

2.2. Data

The satellite-based LST data were retrieved from Landsat 8 using the split-window
algorithm and data from 22 October 2020 (a sunny and cloud-free day). The overpass time is
about 11:30 am in Beijing time. It is mainly sunny in October in Beijing, before and after this
date, and the air temperature on this day was within the normal range. The original thermal
bands were at 30 m spatial resolution, and LST at 30 m resolution was upscaled to 1080 m,
then downscaled to 90 m in this study. LST at 90 m spatial resolution, upscaled from 30 m,
was used to validate the downscaled LST. The “upscale-downscale” approach used the
same satellite data to validate downscaled LST and avoided errors from different satellite
data. The independent variables used in the statistical regression algorithm included
spectral reflectance (blue, red, green, near-infrared, short-wave infrared 1, and short-
wave infrared 2), spectral indices, building morphology indices, and a DEM (a total of
18 predictors). The spectral indices were calculated from the spectral reflectance of Landsat
8, and building morphology indices were obtained from building vector data. Details of
these data and indices are listed in Tables 2 and 3. In addition, building morphology indices
were used only for study area B (5th ring of Beijing) because the building data we obtained
does not cover every impervious surface of Beijing.

Table 2. Data used in this study.

Data Type Data Resource Spatial Resolution

Land surface temperature
Landsat 8

(http://earthexplorer.usgs.gov/,
accessed on 12 October 2021)

30 m

Spectral reflectance Landsat 8 30 m

DEM
SRTM1

(http://gdex.cr.usgs.gov/gdex/,
accessed on 12 October 2021)

30 m

Building boundary and
floor numbers

Beijing Institute of Surveying and
Mapping Vector data

http://earthexplorer.usgs.gov/
http://gdex.cr.usgs.gov/gdex/
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Table 3. Spectral and building morphology indices used herein for statistical regression.

Parameter Full Name Algorithm

1. Spectral
indices

NDVI Normalized difference
vegetation index

NDVI =
ρnir−ρred
ρnir+ρred

where ρ is band reflectance.

NDMI Normalized difference
moisture index NDMI =

ρnir−ρswir2
ρnir+ρswir2

NDBI Normalized difference
building index NDBI =

ρswir2−ρnir
ρswir2+ρnir

MNDWI Modified normalized
difference water index MNDWI =

ρgreen−ρswir2
ρgreen+ρswir2

NDDI Normalized difference
desert index NDDI =

ρswir2−ρblue
ρswir2+ρblue

NMDI Normalized multiband
drought index NMDI =

ρnir−(ρswir1−ρswir2)
ρnir+(ρswir1−ρswir2)

2. Building
morphology

indices

Height Mean building height

Height =

n
∑

i = 1
Ai Hi

n
∑

i = 1
Ai

where, Hi is the ith building height,
Ai is the plan area of building i,

and n is the total number of
buildings in one pixel.

Density Mean building density

Density =

n
∑

i = 1
Ai

Apixel

where, Ai is the plan area of
building i, Apixel is the pixel size,

and n is the total number of
buildings in one pixel.

SVF Sky view factor

SVF = 1−
m
∑

i = 1
sin γi

m
where, γi is the influence of terrain
elevation angle of the ith azimuth
angle with unit of radians, m is the
number of azimuth angles (m = 36
herein). SVF = 0 means the sky is

totally covered. SVF = 1 means the
sky is totally open [26].

λB
Building surface area to

plan area ratio

λB =

n
∑

i = 1
(Ar,i+Aw,i)

Apixel

where, Ar,i and Aw,i are the roof
area and the area of all walls of

building i, respectively.

FAR Floor area ratio

FAR =

n
∑

i = 1
Ai×N

Apixel

where, Ai is the plan area of
building i, Apixel is the pixel size, n
is the total number of buildings in
one pixel, and N is the number of

floors of building i.



Remote Sens. 2022, 14, 2390 5 of 16Remote Sens. 2022, 14, x 4 of 18 
 

 

 
Figure 1. Study areas (a,b) with land cover types. Landcover types in area (a) in 2020 are from the 
GlobalLand30 product; the local climate zones of area (b) are classified using Landsat 8 imagery 
[25]. 

2.2. Data 
The satellite-based LST data were retrieved from Landsat 8 using the split-window 

algorithm and data from 22 October 2020 (a sunny and cloud-free day). The overpass time 
is about 11:30 am in Beijing time. It is mainly sunny in October in Beijing, before and after 
this date, and the air temperature on this day was within the normal range. The original 
thermal bands were at 30 m spatial resolution, and LST at 30 m resolution was upscaled 
to 1080 m, then downscaled to 90 m in this study. LST at 90 m spatial resolution, upscaled 
from 30 m, was used to validate the downscaled LST. The “upscale-downscale” approach 
used the same satellite data to validate downscaled LST and avoided errors from different 
satellite data. The independent variables used in the statistical regression algorithm in-
cluded spectral reflectance (blue, red, green, near-infrared, short-wave infrared 1, and 
short-wave infrared 2), spectral indices, building morphology indices, and a DEM (a total 
of 18 predictors). The spectral indices were calculated from the spectral reflectance of 
Landsat 8, and building morphology indices were obtained from building vector data. 
Details of these data and indices are listed in Tables 2 and 3. In addition, building mor-
phology indices were used only for study area B (5th ring of Beijing) because the building 
data we obtained does not cover every impervious surface of Beijing. 

  

Figure 1. Study areas (a,b) with land cover types. Landcover types in area (a) in 2020 are from the
GlobalLand30 product; the local climate zones of area (b) are classified using Landsat 8 imagery [25].

2.3. Methods
2.3.1. LST Retrieval

A practical split-window algorithm for LST retrieval was proposed by Du et al.
(2015) [27], based on radiative transfer theory, as follows:

LST = b0 + (b1 + b2
1− ε

ε
+ b3

∆ε

ε2 )
Ti + Tj

2
+ (b4 + b5

1− ε

ε
+ b6

∆ε

ε2 )
Ti − Tj

2
+ b7(Ti − Tj)

2 (1)

where Ti and Tj are the TOA (top of atmosphere) brightness temperature in bands 10 and 11,
respectively; ε is the average emissivity of bands 10 and 11; ∆ε is the emissivity difference (∆ε = εi − εj);
and bk (k = 1, 2, . . . , 7) are coefficients that can be obtained from the look-up table in Du et al.
(2015) [27]. The emissivity algorithm is as follows:

ε = PvRvεv + (1− Pv)Rmεm + dε (2)
Rv = 0.9332 + 0.0585Pv
Rm = 0.9886 + 0.128Pv
Rs = 0.9902 + 0.1068Pv

 (3)

where Pv is the coverage of vegetation, Pv = ( NDVI−NDVIs
NDVIv−NDVIs

)
2
, with NDVIs representing the NDVI

values of bare soil or impervious surfaces, and NDVIv representing the NDVI values of dense
vegetation; εv, εm, and εs are the emissivities of vegetation, impervious surfaces, and bare soil,
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respectively (Equation (2)); and Rv, Rm, and Rs are the LST ratios of vegetation, impervious surfaces,
and bare soil, respectively, which can be obtained from Pv (Equation (3)).

2.3.2. Random Forest Method
The RF method was developed based on a decision tree model and is an extension of a bagging

algorithm with the advantages of high accuracy, high robustness, and insensitivity to multicollinear-
ity [20,28]. Random forest is an integrated algorithm involving the aggregation of substantial “trees”
into a single prediction; each tree is involved in the decision making. A random forest can exploit
nonlinear relationships between predictors and dependent variables, and is widely used for regres-
sion [5,19,20,28]. Training data are randomly selected by a bootstrap approach, and approximately
37% of samples are not selected when the number of samples is large enough; these are out-of-bag
(OOB) samples. The OOB samples can then be used as test data; thus, RF should not deliberately
prepare training and test samples. The OOB score is used to judge the performance of the RF model
and is indicated as R2 (Equations (4)–(6)). Each tree has one R2 value, and the average of all the R2

values is the OOB score of the RF model. Random forest determines the importance of each predictor
by assessing the increase in OOB error when this predictor changes, but other predictors remain
constant [29]. OOB error = 1 − R2.

This study used OOB samples as test data, and all predictors were input for RF model generation
(mtry = all input predictors). The minimum size of terminal nodes “nodesize” = 5. After testing,
500 trees were observed to be sufficient for this study (ntree = 500); the OOB score demonstrated no
significant improvement when the number of trees exceeded 500.

R2 = 1− u
v

(4)

u =
N

∑
i = 1

( fi − yi)
2 (5)

v =
N

∑
i = 1

(yi − y)2 (6)

where R2 is the OOB score, u/v is the OOB error, N is the number of samples, f is the simulated value,
y is the true value, and y is the average of the true values.

2.3.3. LST Upscaling
This study first upscaled LST, then downscaled it, using Planck’s law to upscale LST from a

finer to a coarser resolution, as follows [30]:

εc·R(Tc, λ) =

n
∑

i = 1
εi, f ·R(Ti, f , λ)

n
(7)

where εc and Tc are the land surface emissivity and LST values, respectively, of one pixel at coarser
resolution; εi,f and Ti,f are the land surface emissivity and LST values, respectively, of pixel i at finer
resolution; R() is Planck’s law algorithm; n is the number of pixels at fine resolution that corresponds
to the spatial area of the coarse resolution images; εc and εi,f are calculated using Equation (2).

The Landsat LST at 30 m spatial resolution was upscaled to 90, 540, and 1080 m, respectively.

2.3.4. LST Downscaling
The detailed process of LST downscaling in this study is shown in Figure 2. First, the optimal

moving window size was determined using MGWR. Theoretically, MGWR allows different spatial
scales for different predictors, showing that the spatial ranges of spatial stationary for each predictor
are different. MGWR uses bandwidth to determine the spatial range. Herein, the minimum band-
width among all bandwidths of predictors was utilized to estimate the optimal moving window
size. The window size was approximately equal to the square root of the minimum bandwidth. The
minimum bandwidth was chosen because, within the spatial range of the minimum bandwidth, the
relationship between predictors and dependent variables is stationary. To obtain a stable bandwidth,
we used the Monte Carlo test for spatial variability.
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Second, statistical regression using the RF method was executed during the moving window
area at coarse resolution, a regression given to the center pixel of the window. Then, regression with
finer predictors was used for the spatial area at finer resolution that corresponded to the central pixel
area at coarser resolution (red area in Figure 3 left-hand side). Downscaled LST with finer resolution
(red area in Figure 3 right-hand side) was thus obtained. The window was moved pixel by pixel.
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Figure 3. Simple schematic diagram of a downscaled area using a moving window; left is the
window at coarser resolution, right is the window at finer resolution; red area on the right is the
downscaled area.

Third, LST at 1080 m spatial resolution was downscaled with a moving window to 540 m, then
to 90 m. The downscaled 540 m LST was corrected by the upscaled 540 m LST. The downscaled 90 m
LST was validated by the upscaled 90 m LST.

2.3.5. Metrics
(1) Pearson correlation coefficient (Pearson’s R)

R =
cov(X, Y)

σXσY
(8)

where X is observation, Y is simulation, cov(X,Y) is the covariance of X and Y, σX, σY are standard
deviations of X and Y.

(2) Root Mean Square Error (RMSE)
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RMSE =

√√√√√ n
∑

i = 1
(X−Y)2

n
(9)

where X is observation, Y is simulation, n is the number of X or Y,

(3) Kling Gupta coefficient (KGE)

KGE = 1−
√
(1− R)2 + (1− σ)2 + (1− µ)2 (10)

σ = σY
σX

, µ =
µY
µX

(11)

where R is the Pearson correlation coefficient, σX, σY are standard deviations of X and Y, µX and µY
are the mean of X and Y.

3. Results and Discussion
3.1. Comparison of Global and Different Local Windows

The optimal moving window was approximately 7 × 7, estimated using the minimum band-
width based on MGWR. In addition, downscaled LSTs using other window sizes of 3 × 3, 5 × 5, and
11 × 11 were compared with 7 × 7. Single-step downscaling from 1080 to 90 m was used here, as
opposed to the stepwise approach. Figure 4 shows that the downscaled LSTs using different local win-
dows were generally more consistent with observations, with higher Pearson’s correlation coefficients
(R) and smaller root-mean-square errors (RMSEs), compared with using the global window. The R
and RMSE improved gradually as the window size reduced (e.g., 0.59 and 3.3 K using the global
window (Figure 4e) versus 0.91 and 1.53 K using a 3 × 3 window (Figure 4a). Compared to other
studies [9,21], RMSE decreased when using a moving window instead of a global window, but RMSE
decreased mostly in this study. The KGE are reduced gradually with increasing moving window size
and at a minimum with global window (Figure 4). Although the downscaled LSTs using 3 × 3 and
5 × 5 moving windows had higher correlations with observations, their spatial distributions were
poor, having fuzzy boundaries of land covers (Figure 5). The number of samples for the regression
model was too small with these smaller windows, leading to the generation of unreasonable regres-
sion relationships and over-fitting. The downscaled LSTs using 7 × 7 and 11 × 11 windows had clear
boundaries of land covers and sharper images (Figure 5c,d). The 7 × 7 window performed better
than the 11 × 11 window, with higher r and smaller RMSE (Figure 4c,d).

Theoretically, LST at a finer resolution should show a larger variability because more detailed
information is present than at a coarser resolution. Table 4 shows that the ranges of downscaled LST
using local windows were generally larger than LST at 1080 m resolution. However, the downscaled
LST using the global window had the smallest range, which shows that the global window does not
perform well in revealing LST differences between land covers. The LST difference of 19 K using the
7 × 7 window was a little larger than that using the 11 × 11 window (18 K).

Table 4. Variation range of downscaled LST using different moving windows in study area A.

Window Size Range (K) Difference (K)

3 × 3 276–296 20
5 × 5 277–296 19
7 × 7 277–296 19

11 × 11 278–296 18
Global window 281–293 12

LST (1080 m resolution) 278–294 16
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3.2. Stepwise Downscaling of LST
The LSTs downscaled from 1080 to 90 m using the step-by-step and single-step approaches,

respectively, were compared with the upscaled LST at 90 m. To highlight the effect of the stepwise
approach, the global window, rather than a moving window, was used in this comparison. The
step-by-step approach showed improved Pearson’s R (0.68) and RMSE (3.04 K) compared with the
single-step approach (r = 0.59; RMSE = 3.3 K) (Table 5). The KGE was also larger with step-by-step.

Table 5. Downscaling LST from 1080 to 90 m resolution using the global window with step-by-step
and single-step approaches, respectively, for Beijing on 22 October 2020.

Downscaling Approach Pearson’s R RMSE (K) KGE

Step-by-step (1080–540–90 m) 0.68 3.04 0.54
Single-step (1080–90 m) 0.59 3.3 0.28

The regression relationships between LST and predictors at 1080 m resolution are too crude
for use at 90 m and will be missing some detailed information. However, the stepwise downscaling
method compensates for this deficiency, to a certain extent, by incorporating 540 m as an intermediate
resolution herein.

3.3. Compound Effects of a Local Window and Stepwise Downscaling
LST was downscaled from 1080 to 540 to 90 m by simultaneously using a 7 × 7 local window

and a stepwise approach. We also tried adding a further intermediate point at 270 m, between
540 and 90 m, but the result was nearly identical to that from 540 to 90 m and is not displayed here.
The Pearson’s R and RMSE using the stepwise approach were 0.89 and 1.72 K, respectively; these
were slightly different than the single-step approach (0.88 and 1.70 K, respectively) (Table 6). The
difference of KGE was also smaller than that with the global window. The advantage of the stepwise
approach was diminished when using a local window compared with using the global window.
This may be because the purposes of the local window and stepwise approach are both related to
obtaining more detailed information for the generation of the regression model.

Table 6. Downscaling LST from 1080 to 90 m using a 7 × 7 moving window with step-by-step and
single-step approaches, respectively, for Beijing on 22 October 2020.

Downscaling Approach Pearson’s R RMSE (K) KGE

Step-by-step (1080–540–90 m) 0.89 1.72 0.75
Single step (1080–90 m) 0.88 1.7 0.78

The 7 × 7 window performed best at 1080 m; however, it may not be the optimal window for
other spatial resolutions. Therefore, we used a variable window size during stepwise downscaling.
The 7 × 7 window was used from 1080 to 540 m, and 7 × 7, 5 × 5, and 3 × 3 windows were used
from 540 to 90 m. The Pearson’s r was 0.89 for all three window sizes, and the RMSEs only varied by
a maximum of 0.03 K (Table 7). The KGE with both 7 × 7 window was larger than other windows;
however, the KGE difference between the three combinations was not so large (Table 7). It follows
that the regression relationships between LST and predictors during the spatial area of 7 × 7 window
at 1080 m are stable not only at coarse resolution but also at finer resolutions. The minimal range
of spatial stationary obtained by MGWR is suitable for LST downscaling at both coarse and finer
resolutions from 1080 to 90 m in this study.

Table 7. Different window combinations for stepwise downscaling in Beijing.

Windows Pearson’s R RMSE (K) KGE

(7 × 7) + (7 × 7) 0.89 1.72 0.75
(7 × 7) + (5 × 5) 0.89 1.71 0.73
(7 × 7) + (3 × 3) 0.89 1.74 0.71
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3.4. Downscaling of Impervious Surfaces including Building Morphology
The predictors of building morphology indices were included in study area B, together with

spectral reflectance, spectral indices, and a DEM. First, we investigated the impact of different window
sizes on LST downscaling. For study area B, the global window performed better than local moving
windows (Table 8), contrary to our findings from study area A. Gao et al., (2017) [4] also showed that
the global window performed better over a low heterogeneity area in Beijing, comprising mixtures of
urban land and cropland. Long et al., (2021) [31] defined an urban area with a single landcover type
as a homogeneous area. Hence, for highly mixed surfaces (e.g., forest, urban, and cropland), a local
moving window will perform better than the global window, and it is illogical to perform global
regression. However, for impervious surfaces of urban areas, the global window will perform better.

Table 8. LST in study area B downscaled from 1080 to 90 m using different window sizes, and using
building morphology indices, spectral reflectance, spectral indices, and a DEM as predictors.

Windows Pearson’s R RMSE (K) KGE

3 × 3 0.6 1.17 0.28
5 × 5 0.58 1.19 0.25
7 × 7 0.56 1.21 0.39

11 × 11 0.54 1.23 0.39
Global window 0.6 1.16 0.38

In addition, the spatial distributions of downscaled LST using different windows were essen-
tially consistent with the LST at coarse resolution (Figure 6). However, the window boundary was
obvious for the local windows (Figure 6a–d), and LST was regionally continuous for the global
window (Figure 6e). In addition, downscaled LST variations reached a maximum when using the
global window (Table 9). This shows that some detailed LST information was recovered. We also
studied stepwise downscaling for area B, but the results were inferior to the single-step approach and
are not displayed herein.

Table 9. Range of downscaled LST recorded using different moving window sizes in study area B.

Windows Range (K) Difference (K)

3 × 3 288.4–293.9 5.5
5 × 5 288.5–293.7 5.2
7 × 7 288.4–294 5.6

11 × 11 288.6–294 5.4
Global window 287.6–293.5 5.9
LST at 1080 m 288.8–293.4 4.6

We then compared the downscaled results obtained with and without predictors of building
morphology indices (Figure 7). With the inclusion of building morphology indices, LST downscaling
improved slightly; RMSE improved by 0.01 K, and Pearson’s R improved by 0.01. This may be
because the impact of building morphology on LST at a scale of 1080 m is not significant. The
relationship between LST and predictors simulated at 1080 m was applied at 90 m, so the impact
of building morphology is also not significant at 90 m. It may also be because only the predictors
in the overlap area of all predictors (the building footprint area) are used for the generation of the
regression relationship, which is too limited.

Compared with the upscaled 90 m LST, the LST downscaled from 1080 m using the RF model
that included building morphology was not improved significantly (Figure 7). However, the ability of
the RF model to perform regression was improved when including building morphology, especially
at the 90 m scale (Table 9). This shows that building morphology impacts LST, and it also has a scaling
effect. In Figure 7, the simulated relationship between LST and predictors at 1080 m is applied to 90 m
for downscaling. In addition, morphology is less important than spectral factors at 1080 m, thus, the
impact of morphology at 90 m is not revealed well. It may also be because there was no other urban
morphology (e.g., trees) included in this study; only data from areas covered with buildings were
used, and the number of samples for regression was limited. In the future, thermal airborne high
spatial resolution data will be an important dataset for studying the impact of urban morphology on
LST at very high spatial resolutions (e.g., 20–30 m).
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3.5. Scaling Effect of Building Morphology
The OOB scores of the RF model that included building morphology indices were generally im-

proved at both the 1080 and 90 m scales (Table 10); the improvement was greater at 90 m (0.35 to 0.46)
than at 1080 m (0.44 to 0.46). This shows that the performance of the RF model for regression is
improved by including building morphology. Furthermore, building morphology has a greater
impact on LST at a finer scale.

Table 10. The OOB scores of the RF model with different predictors at different spatial scales in study
area B.

Predictors 1080 m 90 m

Spectral reflectance, spectral indices, and DEM 0.44 0.35

Spectral reflectance, spectral indices, DEM, and
building morphology indices 0.46 0.46

The relative importance of predictors at scales of 1080 and 90 m, respectively, is shown in
Figure 8. Although spectral factors have greater importance than building morphology at 1080 m,
building height becomes the second largest factor (behind only red reflectance) at 90 m. In addition,
the importance of SVF, building height, and density at 90 m is greater than at 1080 m.
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4. Conclusions
In this study, a general goal was to improve the accuracy of LST downscaling using the random

forest model. We investigated two approaches: local downscaling with a moving window; and
stepwise downscaling of spatial resolution. We then discussed the impact and scaling effect of
building morphology on LST.

Multi-scale geographically weighted regression was used to find the optimal moving window
based on the bandwidth of each predictor. The LST retrieved from Landsat 8 was upscaled to 1080 m,
then downscaled to 90 m, and validated by the upscaled 90 m LST. For stepwise downscaling, the
coarse 1080 m resolution LST was downscaled to 540 then 90 m. The main findings of this study are
as follows:
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(1) The performances of local and stepwise LST downscaling are dependent on the extent of
surface heterogeneity. For study area A, with mixed surfaces of forest, cropland, and urban, local
downscaling using different sizes of moving windows (3 × 3, 5 × 5, 7 × 7, and 11 × 11) generally
performed better than using the global window. Pearson’s R increased from 0.59 to 0.91. RMSE
decreased from 3.3 to 1.53 K. Stepwise downscaling from 1080 to 540 to 90 m also performed better
than direct downscaling from 1080 to 90 m, with Pearson’s R improving from 0.59 to 0.68 and RMSE
from 3.3 to 3.0 K. However, for study area B (urban cover only), the global window performed better
than a local moving window, with a higher Pearson’s R and lower RMSE. The stepwise approach
was weakened when combined with the moving window approach for downscaling in study area A.

As far as global window, moving window, stepwise, or single step, which pair combination is
best for LST downscaling? According to the above mentioned, for a high heterogeneity area (study
area A), moving window + stepwise or moving window + single step is best. For a low heterogeneity
area (study area B), global window + single step is good.

(2) The MGWR method was found to be a feasible approach for identifying the optimal window
for LST downscaling based on the bandwidth of each predictor. In this study, a 7 × 7 window was
determined to be the optimal moving window. Although the downscaled LSTs using 3 × 3 and 5 × 5
windows showed higher correlations with observations from study area A, the spatial distributions
were poor, with fuzzy boundaries between different land covers. The 7 × 7 window performed
better than the 11 × 11 window, with a higher Pearson’s R and smaller RMSE. Furthermore, a
variable window size was applied during stepwise downscaling in study area A; a 7 × 7 window
was used from 1080 to 540 m, and 3 × 3, 5 × 5, and 7 × 7 windows were used from 540 to 90 m.
However, the results obtained using variable window sizes were near-identical to those obtained
using a fixed window size, having the same Pearson’s R and a maximum RMSE change of only 0.03.
This further illustrates that the optimal window obtained using the MGWR method is suitable for
LST downscaling at both coarse and finer spatial resolutions.

(3) Building morphology has an impact and scaling effect on urban LST; it has more impact
on LST at a finer scale. Although the Pearson’s R was only increased by 0.01 and RMSE reduced by
0.01 K when including predictors of building morphology indices in study area B, the performance of
the RF model for regression was improved. The OOB score of the RF model increased from 0.44 to
0.46 at 1080 m, and from 0.35 to 0.46 at 90 m, when predictors of building morphology indices were
included. In addition, the importance of SVF, building height, and density at 90 m resolution was
greater than at 1080 m.

Strictly speaking, the relationships between LST and predictors over heterogeneous surfaces are
variable across different scales. However, most LST downscaling studies assume these relationships
are scale-invariant. The findings of this study show that the impacts of building morphology on LST
are different at 1080 and 90 m spatial resolutions over an urban area. Although in this study we used
the same relationships at both 1080 m and 90 m, it may not be suitable for higher spatial resolution.
Pu (2021) [32] showed the relationship between LST and predictors at spatial resolution beyond
a range (20~30 m) is relatively steady; however, within this range, this relationship is no longer
applicable. Hence, ways to generate a scale-adaptive relationship, and further study the impact of
urban morphology on LST, are important issues that need to be resolved in future studies.

Author Contributions: Conceptualization, N.L.; methodology, N.L. and H.W.; formal analysis, N.L.
and H.W.; writing—N.L.; writing—review and editing, H.W. and X.O.; supervision, X.O.; project
administration, N.L. and X.O.; funding acquisition, N.L. and X.O. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No.
42171337 and No. 42171370), the Beijing Municipal Science and Technology Commission (No.
Z201100008220002), Beijing Key Laboratory of Urban Spatial Information Engineering (No. 20210210).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2022, 14, 2390 15 of 16

References
1. Duan, S.; Chen, R.; Zhaoliang, L.; Mengmeng, W.; Hanqiu, X.; Hua, L.; Penghai, W.; Wenfeng, Z.; Ji, Z.; Wei, Z.; et al. Reviews of

methods for land surface temperature retrieval from Landsat thermal infrared data. Natl. Remote Sens. Bull. 2021, 25, 1591–1617.
[CrossRef]

2. Li, N.; Wu, H.; Luan, Q. Land surface temperature downscaling in urban area: A case study of Beijing. Natl. Remote Sens. Bull.
2021, 25, 1808–1820. [CrossRef]

3. Wu, H.; Li, X.; Li, Z.; Duan, S.; Qian, Y. Hyperspectral thermal infrared remote sensing: Current status and perspectives. Natl.
Remote Sens. Bull. 2021, 25, 1567–1590. [CrossRef]

4. Gao, L.; Zhan, W.; Huang, F.; Quan, J.; Lu, X.; Wang, F.; Ju, W.; Zhou, J. Localization or Globalization? Determination of the
Optimal Regression Window for Disaggregation of Land Surface Temperature. IEEE Trans. Geosci. Remote Sens. 2017, 55, 477–490.
[CrossRef]

5. Li, W.; Ni, L.; Li, Z.L.; Duan, S.B.; Wu, H. Evaluation of Machine Learning Algorithms in Spatial Downscaling of MODIS Land
Surface Temperature. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2299–2307. [CrossRef]

6. Dominguez, A.; Kleissl, J.; Luvall, J.C.; Rickman, D.L. High-resolution urban thermal sharpener (HUTS). Remote Sens. Environ.
2011, 115, 1772–1780. [CrossRef]

7. Zakšek, K.; Oštir, K. Downscaling land surface temperature for urban heat island diurnal cycle analysis. Remote Sens. Environ.
2012, 117, 114–124. [CrossRef]

8. Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Neale, C.M.U. A vegetation index based technique for spatial sharpening of
thermal imagery. Remote Sens. Environ. 2007, 107, 545–558. [CrossRef]

9. Duan, S.-B.; Li, Z.-L. Spatial Downscaling of MODIS Land Surface Temperatures Using Geographically Weighted Regression:
Case Study in Northern China. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6458–6469. [CrossRef]

10. Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat
surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [CrossRef]

11. Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex
heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [CrossRef]

12. Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data.
Remote Sens. Environ. 2014, 145, 55–67. [CrossRef]

13. Yin, Z.; Wu, P.; Foody, G.M.; Wu, Y.; Liu, Z.; Du, Y.; Ling, F. Spatiotemporal Fusion of Land Surface Temperature Based on a
Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1808–1822. [CrossRef]

14. Guo, L.J.; Moore, J.M. Pixel block intensity modulation: Adding spatial detail to TM band 6 thermal imagery. Int. J. Remote Sens.
1998, 19, 2477–2491. [CrossRef]

15. Norman, J.M.; Anderson, M.C.; Kustas, W.P.; French, A.N.; Mecikalski, J.; Torn, R.; Diak, G.R.; Schmugge, T.J.; Tanner, B.C.W.
Remote sensing of surface energy fluxes at 101-m pixel resolutions. Water Resour. Res. 2003, 39, 1221. [CrossRef]

16. Merlin, O.; Al Bitar, A.; Walker, J.P.; Kerr, Y. An improved algorithm for disaggregating microwave-derived soil moisture based
on red, near-infrared and thermal-infrared data. Remote Sens. Environ. 2010, 114, 2305–2316. [CrossRef]

17. Mpelasoka, F.S.; Mullan, A.B.; Heerdegen, R.G. New Zealand climate change information derived by multivariate statistical and
artificial neural networks approaches. Int. J. Climatol. 2001, 21, 1415–1433. [CrossRef]

18. Gualtieri, J.A.; Chettri, S. Support vector machines for classification of hyperspectral data. In Proceedings of the IGARSS 2000,
IEEE 2000 International Geoscience and Remote Sensing Symposium, Taking the Pulse of the Planet: The Role of Remote Sensing
in Managing the Environment, Proceedings (Cat. No.00CH37120), Honolulu, HI, USA, 24–28 July 2000; Volume 812, pp. 813–815.

19. Hutengs, C.; Vohland, M. Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens.
Environ. 2016, 178, 127–141. [CrossRef]

20. Yang, Y.; Cao, C.; Pan, X.; Li, X.; Zhu, X. Downscaling Land Surface Temperature in an Arid Area by Using Multiple Remote
Sensing Indices with Random Forest Regression. Remote Sens. 2017, 9, 789. [CrossRef]

21. Yang, Y.; Li, X.; Cao, C. Downscaling urban land surface temperature based on multi-scale factor. Sci. Surv. Mapp. 2017, 42, 73–79.
[CrossRef]

22. Zhu, X.; Song, X.; Leng, P.; Hu, R. Spatial downscaling of land surface temperature with the multi-scale geographically weighted
regression. Natl. Remote Sens. Bull. 2021, 25, 1749–1766. [CrossRef]

23. Yu, H.; Fotheringham, A.S.; Li, Z.; Oshan, T.; Kang, W.; Wolf, L.J. Inference in Multiscale Geographically Weighted Regression.
Geogr. Anal. 2020, 52, 87–106. [CrossRef]

24. Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017,
107, 1247–1265. [CrossRef]

25. Li, N.; Yang, J.; Qiao, Z.; Wang, Y.; Miao, S. Urban Thermal Characteristics of Local Climate Zones and Their Mitigation Measures
across Cities in Different Climate Zones of China. Remote Sens. 2021, 13, 1468. [CrossRef]

26. Liang, C.; Ng, E.; An, X.; Chao, R.; Lee, M.; Wang, U.; He, Z. Sky view factor analysis of street canyons and its implications for
daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation
approach. Int. J. Climatol. 2012, 32, 121–136. [CrossRef]

27. Du, C.; Ren, H.; Qin, Q.; Meng, J.; Zhao, S. A Practical Split-Window Algorithm for Estimating Land Surface Temperature from
Landsat 8 Data. Remote Sens. 2015, 7, 647. [CrossRef]

http://doi.org/10.11834/jrs.20211296
http://doi.org/10.11834/jrs.20211309
http://doi.org/10.11834/jrs.20211306
http://doi.org/10.1109/TGRS.2016.2608987
http://doi.org/10.1109/JSTARS.2019.2896923
http://doi.org/10.1016/j.rse.2011.03.008
http://doi.org/10.1016/j.rse.2011.05.027
http://doi.org/10.1016/j.rse.2006.10.006
http://doi.org/10.1109/TGRS.2016.2585198
http://doi.org/10.1109/TGRS.2006.872081
http://doi.org/10.1016/j.rse.2010.05.032
http://doi.org/10.1016/j.rse.2014.02.003
http://doi.org/10.1109/TGRS.2020.2999943
http://doi.org/10.1080/014311698214578
http://doi.org/10.1029/2002WR001775
http://doi.org/10.1016/j.rse.2010.05.007
http://doi.org/10.1002/joc.617
http://doi.org/10.1016/j.rse.2016.03.006
http://doi.org/10.3390/rs9080789
http://doi.org/10.1016/j.apsusc.2016.11.226
http://doi.org/10.11834/jrs.20211202
http://doi.org/10.1111/gean.12189
http://doi.org/10.1080/24694452.2017.1352480
http://doi.org/10.3390/rs13081468
http://doi.org/10.1002/joc.2243
http://doi.org/10.3390/rs70100647


Remote Sens. 2022, 14, 2390 16 of 16

28. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
29. Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236.

[CrossRef]
30. Zhu, J.; Zhu, S.; Yu, F.; Zhang, G.; Xu, Y. A downscaling method for ERA5 reanalysis land surface temperature over urban and

mountain areas. Natl. Remote Sens. Bull. 2021, 25, 1778–1791. [CrossRef]
31. Long, L.; Li, J.; Chen, Y.; Xia, H.; Chen, Q. An Auto-Adjusted Kernel Method for Thermal Sharpening with Local and Object-Based

Window Strategies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3659–3668. [CrossRef]
32. Pu, R.L. Assessing scaling effect in downscaling land surface temperature in a heterogenous urban environment. Int. J. Appl.

Earth Obs. Geoinf. 2021, 96, 102256. [CrossRef]

http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.patrec.2010.03.014
http://doi.org/10.11834/jrs.20211257
http://doi.org/10.1109/JSTARS.2021.3067349
http://doi.org/10.1016/j.jag.2020.102256

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Methods 
	LST Retrieval 
	Random Forest Method 
	LST Upscaling 
	LST Downscaling 
	Metrics 


	Results and Discussion 
	Comparison of Global and Different Local Windows 
	Stepwise Downscaling of LST 
	Compound Effects of a Local Window and Stepwise Downscaling 
	Downscaling of Impervious Surfaces including Building Morphology 
	Scaling Effect of Building Morphology 

	Conclusions 
	References

