Comparison of Deep Learning Models for the Classification of Noctilucent Cloud Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Methods
2.2.1. Convolutional Neural Network
2.2.2. Support Vector Machine
2.2.3. Metrics Used for the Evaluation
2.3. Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dubietis, A.; Dalin, P.; Balčiūnas, R.; Černis, K.; Pertsev, N.; Sukhodoev, V.; Perminov, V.; Zalcik, M.; Zadorozhny, A.; Connors, M.; et al. Noctilucent Clouds: Modern Ground-Based Photographic Observations by a Digital Camera Network. Appl. Opt. 2011, 50, F72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hervig, M.E.; Gerding, M.; Stevens, M.H.; Stockwell, R.; Bailey, S.M.; Russell, J.M.; Stober, G. Mid-Latitude Mesospheric Clouds and Their Environment from SOFIE Observations. J. Atmos. Solar-Terr. Phys. 2016, 149, 1–14. [Google Scholar] [CrossRef]
- Vincent, R.A. The Dynamics of the Mesosphere and Lower Thermosphere: A Brief Review. Vincent Prog. Earth Planet. Sci. 2011, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Kirkwood, S.; Stebel, K. Influence of Planetary Waves on Noctilucent Cloud Occurrence over NW Europe. J. Geophys. Res 2003, 108, 8440. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.E.; Oliverot, J.J.; Jensen, E.J.; Schroeder, W.; Toon, O.B. Relation between Increasing Methane and the Presence of Ice Clouds at the Mesopause. Nature 1989, 338, 490–492. [Google Scholar] [CrossRef]
- Lübken, F.-J.; Berger, U.; Baumgarten, G. On the Anthropogenic Impact on Long-Term Evolution of Noctilucent Clouds. Geophys. Res. Lett. 2018, 45, 6681–6689. [Google Scholar] [CrossRef]
- Klostermeyer, J. Noctilucent Clouds Getting Brighter. J. Geophys. Res. Atmos. 2002, 107, AAC 1-1–AAC 1-7. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Dalin, P.; Mann, I. Towards a Framework for Noctilucent Cloud Analysis. Remote Sens. 2019, 11, 2743. [Google Scholar] [CrossRef] [Green Version]
- Pautet, P.-D.; Stegman, J.; Wrasse, C.M.; Nielsen, K.; Takahashi, H.; Taylor, M.J.; Hoppel, K.W.; Eckermann, S.D. Analysis of Gravity Waves Structures Visible in Noctilucent Cloud Images. J. Atmos. Sol. Terr. Phys. 2011, 73, 2082–2090. [Google Scholar] [CrossRef]
- Dalin, P.; Pertsev, N.; Zadorozhny, A.; Connors, M.; Schofield, I.; Shelton, I.; Zalcik, M.; McEwan, T.; McEachran, I.; Frandsen, S.; et al. Ground-Based Observations of Noctilucent Clouds with a Northern Hemisphere Network of Automatic Digital Cameras. J. Atmos. Solar-Terr. Phys. 2008, 70, 1460–1472. [Google Scholar] [CrossRef]
- Mann, I.; Häggström, I.; Tjulin, A.; Rostami, S.; Anyairo, C.C.; Dalin, P. First Wind Shear Observation in PMSE with the Tristatic EISCAT VHF Radar. J. Geophys. Res. Space Phys. 2016, 121, 11271–11281. [Google Scholar] [CrossRef]
- Dalin, P.; Kirkwood, S.; Andersen, H.; Hansen, O.; Pertsev, N.; Romejko, V. Comparison of Long-Term Moscow and Danish NLC Observations: Statistical Results. Ann. Geophys. 2006, 24, 2841–2849. [Google Scholar] [CrossRef] [Green Version]
- Dalin, P.; Pertsev, N.; Perminov, V.; Dubietis, A.; Zadorozhny, A.; Zalcik, M.; McEachran, I.; McEwan, T.; Černis, K.; Grønne, J.; et al. Response of Noctilucent Cloud Brightness to Daily Solar Variations. J. Atmos. Solar-Terr. Phys. 2018, 169, 83–90. [Google Scholar] [CrossRef]
- Ludlam, F.H. Noctilucent Clouds. Tellus 1957, 9, 341–364. [Google Scholar] [CrossRef]
- Bengio, Y. Convolutional Networks for Images, Speech, and Time-Series. Oracle Performance for Visual Captioning View Project MoDeep View Project. Handbook of Brain Theory Neural Networks. 1997. Available online: http://www.iro.umontreal.ca/~lisa/pointeurs/handbook-convo.pdf (accessed on 27 March 2022).
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, Lake Tahoe, NV, USA, 3–6 December 2012; Curran Associates, Inc.: Red Hook, NY, USA, 2012. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50× fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360v4. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar] [CrossRef]
- Burkov, A. The Hundred-Page Machine Learning Book; Andriy Burkov: Quebec City, QC, Canada, 2019; Volume 1, pp. 5–7. [Google Scholar]
- Theodoridis, S.; Koutroumbas, K. Support Vector Machines. In Pattern Recognition; Academic Press: Cambridge, MA, USA, 2009; pp. 119–129. [Google Scholar]
- Powers, D.M.W. Evaluation: From Precision, Recall and F-Score to ROC, Informedness, Markedness & Correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Workshop Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Wang, M.; Deng, W. Deep Visual Domain Adaptation: A Survey. Neurocomputing 2018, 312, 135–153. [Google Scholar] [CrossRef] [Green Version]
Model | Estimated Total Size (MB) | Precision | Recall | F1 Score |
---|---|---|---|---|
SVM | 0.25 | 0.99 | 0.38 | 0.55 |
SqueezeNet (squeezenet1_1) | 21.81 | 1 | 0.90 | 0.95 |
ShuffleNet (shufflenet_v2_x1_0) | 35.13 | 0.99 | 0.91 | 0.95 |
MobileNet (mobilenet_v2) | 24.90 | 0.98 | 0.92 | 0.95 |
Resnet (resnet18) | 81.11 | 0.98 | 0.91 | 0.95 |
Predicted Label | ||||||
---|---|---|---|---|---|---|
Test Image | True Label | SVM | SqueezeNet | ShuffleNet | MobileNet | Resnet |
0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 0 | 0 | |
0 | 1 | 0 | 1 | 0 | 0 | |
0 | 1 | 1 | 1 | 0 | 0 | |
0 | 1 | 0 | 0 | 1 | 1 | |
1 | 1 | 1 | 1 | 1 | 1 | |
1 | 1 | 1 | 1 | 1 | 1 | |
1 | 1 | 1 | 1 | 0 | 0 | |
1 | 1 | 1 | 1 | 1 | 1 | |
1 | 1 | 1 | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapkota, R.; Sharma, P.; Mann, I. Comparison of Deep Learning Models for the Classification of Noctilucent Cloud Images. Remote Sens. 2022, 14, 2306. https://doi.org/10.3390/rs14102306
Sapkota R, Sharma P, Mann I. Comparison of Deep Learning Models for the Classification of Noctilucent Cloud Images. Remote Sensing. 2022; 14(10):2306. https://doi.org/10.3390/rs14102306
Chicago/Turabian StyleSapkota, Rajendra, Puneet Sharma, and Ingrid Mann. 2022. "Comparison of Deep Learning Models for the Classification of Noctilucent Cloud Images" Remote Sensing 14, no. 10: 2306. https://doi.org/10.3390/rs14102306
APA StyleSapkota, R., Sharma, P., & Mann, I. (2022). Comparison of Deep Learning Models for the Classification of Noctilucent Cloud Images. Remote Sensing, 14(10), 2306. https://doi.org/10.3390/rs14102306