Towards the Spectral Mapping of Plastic Debris on Beaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Ground Survey Design
2.3. Spectral Data Collection
2.4. Spectral Processing and Analysis
2.5. Spectral Feature Analysis (SFA)
2.6. Linear Regression of In-Situ Plots
- d = feature depth
- w = feature width
- a = feature area
- c = MPD surface cover (%)
2.7. Statistical Analysis
3. Results
3.1. MPD Surface Cover of Field Sites
3.2. Spectra of Sample Sites
3.3. Statistical Differences
3.4. Association of Spectral Feature Parameters to Apparent Surface Cover of Marine Plastic Debris
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lavers, J.L.; Bond, A.L.; Hutton, I. Plastic ingestion by flesh-footed shearwaters (Puffinus carneipes): Implications for fledgling body condition and the accumulation of plastic-derived chemicals. Environ. Pollut. 2014, 187, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Gall, S.C.; Thompson, R.C. The impact of debris on marine life. Mar. Pollut. Bull. 2015, 92, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.T.; Rangel-Buitrago, N.G.; Anfuso, G.; Cervantes, O.; Botero, C.M. Litter impacts on scenery and tourism on the Colombian north Caribbean coast. Tour. Manag. 2016, 55, 209–224. [Google Scholar] [CrossRef]
- Watkins, E.; Ten Brink, P.; Withana, S.; Mutafoglu, K.; Schweitzer, J.P.; Russi, D.; Kettunen, M. Marine Litter: Socio-Economic Study Scoping Report Commissioned by the United Nations Environment Programme (UNEP); Technical Report; Institute for European Environmental Policy: London, UK; Brussels, Belgium, May 2015. [Google Scholar]
- Eriksen, M.; Lebreton, L.C.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.C. Plastic debris in the marine environment: Consequences and solutions. Mar. Nat. Conserv. Eur. 2006, 193, 107–116. [Google Scholar]
- Olivelli, A.; Hardesty, B.D.; Wilcox, C. Coastal margins and backshores represent a major sink for marine debris: Insights from a continental-scale analysis. Environ. Res. Lett. 2020, 15, 074037. [Google Scholar] [CrossRef]
- Jambeck, J.; Geyer, R.; Wilcox, C.; Siegler, T.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K. Plastic waste inputs from Land into the Ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Lebreton, L.C.; Van Der Zwet, J.; Damsteeg, J.W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef]
- Ryan, P. A Brief History of Marine Litter Research. In Marine Anthropogenic Litter, 1st ed.; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer Open: Berlin/Heidelberg, Germany, 2015; Chapter 1; pp. 1–25. [Google Scholar] [CrossRef] [Green Version]
- Lebreton, L.C.; Andrady, A.; Eriksen, M.; Lebreton, L.C.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; et al. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fingas, M.; Brown, C. Review of oil spill remote sensing. Mar. Pollut. Bull. 2014, 83, 9–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Bowles, J.H.; Povazhnyi, V.; Saprygin, V.; Wagner, E.J.; Patterson, K.W. HICO-based NIR-red models for estimating chlorophyll-a concentration in productive coastal waters. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1111–1115. [Google Scholar] [CrossRef]
- Paige, M.L.B.; Painho, M. Detection of exogenous floating marine debris: An overview of techniques associated with remote sensing. Water Resour. Manag. VIII 2015, 196, 537–548. [Google Scholar] [CrossRef] [Green Version]
- Veenstra, T.S.; Churnside, J.H. Airborne sensors for detecting large marine debris at sea. Mar. Pollut. Bull. 2012, 65, 63–68. [Google Scholar] [CrossRef]
- Hibbitts, C.A.; Bekker, D.; Hanson, T.; Knuth, D.; Goldberg, A.; Ryan, K.; Cantillo, D.; Daubon, D.; Morgan, F. Dual-band discrimination and imaging of plastic objects. In Proceedings of the SPIE—The International Society for Optical Engineering (SPIE 2019), Baltimore, MD, USA, 14–18 April 2019; Volume 11012. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papakonstantinou, A.; Garaba, S.P. Detection of floating plastics from satellite and unmanned aerial systems (Plastic Litter Project 2018). Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 175–183. [Google Scholar] [CrossRef]
- Acuña-Ruz, T.; Uribe, D.; Taylor, R.; Amézquita, L.; Guzmán, M.C.; Merrill, J.; Martínez, P.; Voisin, L.; Mattar, C.B. Anthropogenic marine debris over beaches: Spectral characterization for remote sensing applications. Remote Sens. Environ. 2018, 217, 309–322. [Google Scholar] [CrossRef]
- Moshtaghi, M.; Knaeps, E.; Sterckx, S.; Garaba, S. Spectral reflectance of marine macroplastics in the VNIR and SWIR measured in a controlled environment. Sci. Rep. 2021, 11, 5436. [Google Scholar] [CrossRef]
- Goddijn-Murphy, L.; Dufaur, J. Proof of concept for a model of light reflectance of plastics floating on natural waters. Mar. Pollut. Bull. 2018, 135, 1145–1157. [Google Scholar] [CrossRef]
- Maximenko, N.; Corradi, P.; Law, K.; Sebille, E.; Garaba, S.; Lampitt, R.; Galgani, F.; Martinez-Vicente, V.; Goddijn-Murphy, L.; Veiga, J.; et al. Towards the integrated marine debris observing system. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Fallati, L.; Polidori, A.; Salvatore, C.; Saponari, L.; Savini, A.; Galli, P. Anthropogenic Marine Debris assessment with Unmanned Aerial Vehicle imagery and deep learning: A case study along the beaches of the Republic of Maldives. Sci. Total Environ. 2019, 693, 133581. [Google Scholar] [CrossRef]
- Martin, C.; McCabe, M.F.; Zhang, Q.; Duarte, C.M.; Parkes, S.; Zhang, X.; Parkes, S.; Zhang, Q.; Zhang, X.; McCabe, M.F.; et al. Use of unmanned aerial vehicles for efficient beach litter monitoring. Mar. Pollut. Bull. 2018, 131, 662–673. [Google Scholar] [CrossRef] [Green Version]
- Goddijn-Murphy, L.; Peters, S.; Sebille, E.V.; James, N.A.; Gibb, S. Concept for a hyperspectral remote sensing algorithm for fl oating marine macro plastics. Mar. Pollut. Bull. 2018, 126, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Aoyama, T. Extraction of marine debris in the Sea of Japan using high-spatial-resolution satellite images. In Proceedings of the SPIE Asia-Pacific Remote Sensing, New Delhi, India, 4–7 April 2016; Volume 9878. [Google Scholar] [CrossRef]
- Garaba, S.P.; Aitken, J.; Slat, B.; Dierssen, H.M.; Lebreton, L.; Zielinski, O.; Reisser, J. Sensing Ocean Plastics with an Airborne Hyperspectral Shortwave Infrared Imager. Environ. Sci. Technol. 2018, 52, 11699–11707. [Google Scholar] [CrossRef]
- Garaba, S.P.; Dierssen, H.M. An airborne remote sensing case study of synthetic hydrocarbon detection using short wave infrared absorption features identified from marine-harvested macro- and microplastics. Remote Sens. Environ. 2018, 205, 224–235. [Google Scholar] [CrossRef]
- Biermann, L.; Clewley, D.; Martinez-Vicente, V.; Topouzelis, K. Finding Plastic Patches in Coastal Waters using Optical Satellite Data. Sci. Rep. 2020, 10, 5364. [Google Scholar] [CrossRef] [Green Version]
- Garaba, S.P.; Arias, M.; Corradi, P.; Harmel, T.; de Vries, R.; Lebreton, L. Concentration, anisotropic and apparent colour effects on optical reflectance properties of virgin and ocean-harvested plastics. J. Hazard. Mater. 2021, 406, 124290. [Google Scholar] [CrossRef] [PubMed]
- Garaba, S.P.; Dierssen, H.M. Hyperspectral ultraviolet to shortwave infrared characteristics of marine-harvested, washed ashore and virgin plastics. Earth Syst. Sci. Data 2020, 12, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Balsi, M.; Esposito, S.; Moroni, M. Hyperspectral characterization of marine plastic litters. In Proceedings of the IEEE International Workshop on Metrology for the Sea, Learning to Measure Sea Health Parameters, MetroSea 2018—Proceedings, Bari, Italy, 8–10 October 2018; pp. 28–32. [Google Scholar] [CrossRef]
- Kühn, F.; Oppermann, K.; Hörig, B. Hydrocarbon index—An algorithm for hyperspectral detection of hydrocarbons. Int. J. Remote Sens. 2004, 25, 2467–2473. [Google Scholar] [CrossRef]
- Chércoles Asensio, R.; San Andrés Moya, M.; De La Roja, J.M.; Gómez, M. Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Anal. Bioanal. Chem. 2009, 395, 2081–2096. [Google Scholar] [CrossRef]
- Mehrubeoglu, M.; Van Sickle, A.; Turner, J. Detection and identification of plastics using SWIR hyperspectral imaging. In Proceedings of the SPIE—The International Society for Optical Engineering, Online Only, CA, USA, 24 August–4 September 2020; Volume 11504, p. 15. [Google Scholar] [CrossRef]
- Vegter, A.C.; Barletta, M.; Beck, C.; Borrero, J.; Burton, H.; Campbell, M.L.; Costa, M.F.; Eriksen, M.; Eriksson, C.; Estrades, A.; et al. Global research priorities to mitigate plastic pollution impacts on marine wildlife. Endanger. Species Res. 2014, 25, 225–247. [Google Scholar] [CrossRef] [Green Version]
- Lavers, J.L.; Bond, A.L. Exceptional and rapid accumulation of anthropogenic debris on one of the world’s most remote and pristine islands. Proc. Natl. Acad. Sci. USA 2017, 114, 6052–6055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavers, J.L.; Dicks, L.; Dicks, M.R.; Finger, A. Significant plastic accumulation on the Cocos (Keeling) Islands, Australia. Sci. Rep. 2019, 9, 7102. [Google Scholar] [CrossRef] [PubMed]
- Hanvey, J.S.; Lewis, P.J.; Lavers, J.L.; Crosbie, N.D.; Pozo, K.; Clarke, B.O. A review of analytical techniques for quantifying microplastics in sediments. Anal. Methods 2017, 9, 1369–1383. [Google Scholar] [CrossRef]
- Lavers, J.L.; Oppel, S.; Bond, A.L. Factors influencing the detection of beach plastic debris. Mar. Environ. Res. 2016, 119, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Nelms, S.; Coombes, C.; Galloway, T.; Godley, B.; Lindeque, P.; Witt, M. Marine anthropogenic litter on British beaches: A 10-year nationwide assessment using citizen science data. Sci. Total. Environ. 2017, 579, 1399–1409. [Google Scholar] [CrossRef] [Green Version]
- Serra-Gonçalves, C.; Lavers, J.L.; Bond, A.L. Global Review of Beach Debris Monitoring and Future Recommendations. Environ. Sci. Technol. 2019, 53, 12158–12167. [Google Scholar] [CrossRef] [PubMed]
- Lavers, J.L.; Sharp, P.B.; Stuckenbrock, S.; Bond, A.L. Entrapment in plastic debris endangers hermit crabs. J. Hazard. Mater. 2020, 387, 121703. [Google Scholar] [CrossRef] [PubMed]
- Ballance, A.; Ryan, P.G.; Turpie, J.K. How much is a clean beach worth? The impact of litter on beach users in the Cape Peninsula, South Africa. S. Afr. J. Sci. 2000, 96, 210–213. [Google Scholar]
- Gonçalves, G.; Andriolo, U.; Pinto, L.; Duarte, D. Mapping marine litter with Unmanned Aerial Systems: A showcase comparison among manual image screening and machine learning techniques. Mar. Pollut. Bull. 2020, 155, 111158. [Google Scholar] [CrossRef]
- Kako, S.; Morita, S.; Taneda, T. Estimation of plastic marine debris volumes on beaches using unmanned aerial vehicles and image processing based on deep learning. Mar. Pollut. Bull. 2020, 155, 111127. [Google Scholar] [CrossRef]
- Woodroffe, C.D.; McLean, R.F.; Wallensky, E. Geomorphology of the Cocos (Keeling) Islands. Attol Res. Bull. 1994, 402, 1–34. [Google Scholar] [CrossRef]
- ABS. Census QuickStats for Cocos (Keeling) Islands. 2016. Available online: www.quickstats.censusdata.abs.gov.au (accessed on 15 December 2020).
- Tangaroa, B. Tangaroa Blue. Available online: https://www.tangaroablue.org/resources/clean-up-data-collection/data-sheet/ (accessed on 2 December 2019).
- Provencher, J.F.; Bond, A.L.; Avery-Gomm, S.; Borrelle, S.B.; Bravo Rebolledo, E.L.; Hammer, S.; Kühn, S.; Lavers, J.L.; Mallory, M.L.; Trevail, A.; et al. Quantifying ingested debris in marine megafauna: A review and recommendations for standardization. Anal. Methods 2017, 9, 1454–1469. [Google Scholar] [CrossRef]
- Robinson, I. The field spectroscopy facility post processing toolbox user guide: Post processing spectral data in MATLAB. 2011. Available online: https://www.research.ed.ac.uk/en/publications/the-field-spectroscopy-facility-post-processing-toolbox-user-guid (accessed on 8 March 2021).
- Kokaly, R.F.; Skidmore, A.K. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 55–83. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.C.; Montes, M.J.; Ahmad, Z.; Davis, C.O. Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space. Appl. Opt. 2000, 39, 887–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodroffe, C.D.; McLean, R.F.; Smithers, S.G.; Lawson, E.M. Atoll reef-island formation and response to sea-level change: West Island, Cocos (Keeling) Islands. Mar. Geol. 1999, 160, 85–104. [Google Scholar] [CrossRef]
- Schott, F.A.; Xie, S.P.; McCreary, J.P. Indian ocean circulation and climate variability. Rev. Geophys. 2009, 47, 1–46. [Google Scholar] [CrossRef]
- Baur, J.; Steinberg, G.; Nikulin, A.; Chiu, K.; de Smet, T.S. Applying deep learning to automate UAV-based detection of scatterable landmines. Remote Sens. 2020, 12, 859. [Google Scholar] [CrossRef] [Green Version]
- Kokaly, R.F.; Despain, D.G.; Clark, R.N.; Livo, K.E. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sens. Environ. 2003, 84, 437–456. [Google Scholar] [CrossRef] [Green Version]
South Island | West Island | ||
---|---|---|---|
Surface Cover % | Nr of Spectra | Surface Cover % | Nr of Spectra |
0.00 | 20 | 0.00 | 18 |
0.46 | 15 | 0.08 | 18 |
0.49 | 16 | 1.43 | 19 |
0.96 | 15 | 1.50 | 18 |
1.24 | 14 | 1.56 | 9 |
1.45 | 15 | 1.61 | 20 |
1.50 | 11 | 1.63 | 17 |
2.69 | 14 | 1.96 | 16 |
3.43 | 20 | 2.62 | 20 |
4.47 | 16 | 4.89 | 16 |
5.67 | 19 | 7.94 | 17 |
25.00 1 | 20 |
Samples | Feature Location (nm) | Feature Parameter | r2 | p-Value |
---|---|---|---|---|
All samples (quadrats = 20) | 1215 | Depth | 0.19 | 0.053 |
Width | 0.05 | 0.3 | ||
Area | 0.13 | 0.1 | ||
1732 | Depth | 0.34 | <0.05 | |
Width | 0.02 | 0.51 | ||
Area | 0.31 | <0.05 | ||
South Island (quadrats = 10) | 1215 | Depth | 0.03 | 0.62 |
Width | 0.01 | 0.77 | ||
Area | 0.08 | 0.42 | ||
1732 | Depth | 0.09 | 0.78 | |
Width | 0.13 | 0.31 | ||
Area | 0.05 | 0.49 | ||
West Island (quadrats = 10) | 1215 | Depth | 0.61 | <0.05 |
Width | 0.18 | 0.22 | ||
Area | 0.31 | 0.09 | ||
1732 | Depth | 0.65 | <0.05 | |
Width | 0.03 | 0.64 | ||
Area | 0.75 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guffogg, J.A.; Soto-Berelov, M.; Jones, S.D.; Bellman, C.J.; Lavers, J.L.; Skidmore, A.K. Towards the Spectral Mapping of Plastic Debris on Beaches. Remote Sens. 2021, 13, 1850. https://doi.org/10.3390/rs13091850
Guffogg JA, Soto-Berelov M, Jones SD, Bellman CJ, Lavers JL, Skidmore AK. Towards the Spectral Mapping of Plastic Debris on Beaches. Remote Sensing. 2021; 13(9):1850. https://doi.org/10.3390/rs13091850
Chicago/Turabian StyleGuffogg, Jenna A., Mariela Soto-Berelov, Simon D. Jones, Chris J. Bellman, Jennifer L. Lavers, and Andrew K. Skidmore. 2021. "Towards the Spectral Mapping of Plastic Debris on Beaches" Remote Sensing 13, no. 9: 1850. https://doi.org/10.3390/rs13091850
APA StyleGuffogg, J. A., Soto-Berelov, M., Jones, S. D., Bellman, C. J., Lavers, J. L., & Skidmore, A. K. (2021). Towards the Spectral Mapping of Plastic Debris on Beaches. Remote Sensing, 13(9), 1850. https://doi.org/10.3390/rs13091850