Delineation of Urban Agglomeration Boundary Based on Multisource Big Data Fusion—A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area (GBA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Data
2.2.1. Night-Time Light Data
2.2.2. POI Data
2.2.3. Population Movement Data
2.3. Methods
2.3.1. Kernel Density Analysis (KDA)
2.3.2. Multiresolution Segmentation
2.3.3. Wavelet Transform
3. Results
3.1. Boundaries of Urban Agglomerations Delineated by Different Data
3.1.1. Boundary of the Urban Agglomeration Delineated by Luojia-01 Data
3.1.2. Urban Agglomeration Boundaries Delineated by NTL and POI Data Fusion
3.1.3. Urban Agglomeration Boundaries Delineated by NTL, POI and Population Movement Data Fusion
3.2. Comparison before and after Data Fusion
3.3. Comparison and Verification of the Results of Urban Agglomeration Delineation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, W.; Kuang, A.; Liu, Z.; Wang, X. Analysing the spatial structure of urban growth across the Yangtze River Middle reaches urban agglomeration in China using NPP-VIIRS night-time lights data. GeoJournal 2021, 1–18. [Google Scholar] [CrossRef]
- Chakraborty, S.; Maity, I.; Patel, P.P.; Dadashpoor, H.; Pramanik, S.; Follmann, A.; Novotný, J.; Roy, U. Spatio-temporal patterns of urbanization in the Kolkata Urban Agglomeration: A dynamic spatial territory-based approach. Sustain. Cities Soc. 2021, 67, 102715. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Gao, P.; Zhong, C. Monitoring the detailed dynamics of regional thermal environment in a developing urban agglomeration. Sensors 2020, 20, 1197. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Dong, J.; Liu, J.; Zhai, J.; Cui, Y.; He, T.; Xiao, X. Different patterns in daytime and nighttime thermal effects of urbanization in Beijing-Tianjin-Hebei urban agglomeration. Remote Sens. 2017, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Cong, C.; Zhang, X.; Zhang, Y. How do high-speed rail projects affect the agglomeration in cities and regions? Transp. Res. Part D Transp. Environ. 2020, 88, 102561. [Google Scholar] [CrossRef]
- Zeng, X.; Xiang, H.; Xue, Y.; Su, Y.; Tong, Y.; Mao, Z. A scenario-based optimization frame to adjust current strategy for population-economy-resource-environment harmony in an urban agglomeration, China. Sustain. Cities Soc. 2021, 67, 102710. [Google Scholar] [CrossRef]
- Kantakumar, L.N.; Kumar, S.; Schneider, K. SUSM: A scenario-based urban growth simulation model using remote sensing data. Eur. J. Remote Sens. 2019, 52, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Roni, R.; Jia, P. An optimal population modeling approach using geographically weighted regression based on high-resolution remote sensing data: A case study in Dhaka City, Bangladesh. Remote Sens. 2020, 12, 184. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Hu, S. Chinese city size evolution under perspective of nighttime light remote sensing. Wuhan Daxue Xuebao 2021, 1, 40–49. [Google Scholar]
- Chen, J.; Wei, H.; Li, N.; Chen, S.; Qu, W.; Zhang, Y. Rxploring the spatial-temporal dynamics of the Yangtze River Delta urban agglomeration based on night-time light remote sensing technology. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5369–5383. [Google Scholar] [CrossRef]
- Li, H.-M.; Li, X.-G.; Yang, X.-Y.; Zhang, H. Analyzing the relationship between developed land area and nighttime light emissions of 36 Chinese cities. Remote Sens. 2019, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Jin, P.; Cheng, Q. Monitoring regional urban dynamics using DMSP/OLS nighttime light data in Zhejiang Province. Math. Probl. Eng. 2020, 2020, 9652808. [Google Scholar] [CrossRef]
- Zhai, W.; Han, B.; Cheng, C. Evaluation of Luojia 1–01 nighttime light imagery for built-up urban area extraction: A case study of 16 cities in China. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1802–1806. [Google Scholar] [CrossRef]
- Liu, X.; Ning, X.; Wang, H.; Wang, C.; Zhang, H.; Meng, J. A rapid and automated urban boundary extraction method based on nighttime light data in China. Remote Sens. 2019, 11, 1126. [Google Scholar] [CrossRef] [Green Version]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhai, W.; Meng, X.; Long, Y. Identifying shrinking cities with NPP-VIIRS nightlight data in China. J. Urban Plan. Dev. 2020, 146, 0402003. [Google Scholar] [CrossRef]
- Yuan, X.; Jia, L.; Menenti, M.; Zhou, J.; Chen, Q. Filtering the NPP-VIIRS nighttime light data for improved detection of settlements in Africa. Remote Sens. 2019, 11, 3002. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Weng, Q.; Wang, K. Developing a new cross-sensor calibration model for DMSP-OLS and Suomi-NPP VIIRS night-light imageries. ISPRS J. Photogramm. Remote Sens. 2019, 153, 36–47. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G. Potentiality of using Luojia 1-01 nighttime light imagery to investigate artificial light pollution. Sensors 2018, 18, 2900. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Fan, H.; Wang, Y. Improving population mapping using Luojia 1-01 nighttime light image and location-based social media data. Sci. Total Environ. 2020, 730, 139148. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Cheng, G.; Wang, C.; Wang, S.; Wang, H. City grade classification based on connectivity analysis by Luojia I night-time light images in Henan Province, China. Remote Sens. 2020, 12, 1705. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, X.D.; Lin, H. The extraction of urban built-up areas by integrating night-time light and POI data—A case study of Kunming, China. IEEE Access 2021, 9, 22417–22429. [Google Scholar]
- Lou, G.; Chen, Q.; He, K.; Zhou, Y.; Shi, Z. Using nighttime light data and poi big data to detect the urban centers of hangzhou. Remote Sens. 2019, 11, 1821. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Du, S.; Wang, Q. Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data. ISPRS J. Photogramm. Remote Sens. 2017, 132, 170–184. [Google Scholar] [CrossRef]
- Bin, J.; Gardiner, B.; Li, E.; Liu, Z. Multi-source urban data fusion for property value assessment: A case study in philadelphia. Neurocomputing 2020, 404, 70–83. [Google Scholar] [CrossRef]
- Liu, J.; Li, T.; Xie, P.; Du, S.; Teng, F.; Yang, X. Urban big data fusion based on deep learning: An overview. Inf. Fusion 2020, 53, 123–133. [Google Scholar] [CrossRef]
- Cao, R.; Tu, W.; Yang, C.; Li, Q.; Liu, J.; Zhu, J.; Zhang, Q.; Li, Q.; Qiu, G. Deep learning-based remote and social sensing data fusion for urban region function recognition. ISPRS J. Photogramm. Remote Sens. 2020, 163, 82–97. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Tu, W.; Mai, K.; Yao, Y.; Chen, Y. Functional urban land use recognition integrating multi-source geospatial data and cross-correlations. Comput. Environ. Urban Syst. 2019, 78, 101374. [Google Scholar] [CrossRef]
- Ma, X.; Li, C.; Tong, X.; Liu, S. A new fusion approach for extracting urban built-up areas from multisource remotely sensed data. Remote Sens. 2019, 11, 2516. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, D.L.; Nunes, B.A.A.; Campos, C.A.V.; Obraczka, K. A deep learning approach for identifying user communities based on geographical preferences and its applications to urban and environmental planning. ACM Trans. Spat. Algorithms Syst. 2020, 6, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Tu, W.; Hu, Z.; Li, L.; Cao, J.; Jiang, J.; Li, Q.; Li, Q. Portraying urban functional zones by coupling remote sensing imagery and human sensing data. Remote Sens. 2018, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Zhang, W.; Yan, Z.; Yu, H.; Diao, W. Multi-feature map pyramid fusion deep network for semantic segmentation on remote sensing data. J. Electron. Inf. Technol. 2019, 41, 2525–2531. [Google Scholar]
- Vergara, C.; Martin, R.K.; Collins, P.J.; Lievsay, J.R. Multi-sensor data fusion between radio tomographic imaging and noise radar. IET Radar Sonar Navig. 2019, 14, 187–193. [Google Scholar] [CrossRef]
- Liu, J.; Deng, Y.; Wang, Y.; Huang, H.; Du, Q.; Ren, F. Urban nighttime leisure space mapping with nighttime light images and POI data. Remote Sens. 2020, 12, 541. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Zhou, C.; Zhang, J.; Yuan, X. Using wavelet transforms to fuse nighttime light data and POI big data to extract urban built-up areas. Remote Sens. 2020, 12, 3887. [Google Scholar] [CrossRef]
- Li, F.; Yan, Q.; Bian, Z.; Liu, B.; Wu, Z. A POI and LST adjusted NTL urban index for urban built-up area extraction. Sensors 2020, 20, 2918. [Google Scholar] [CrossRef]
- Liu, Q.; Zhan, Q.; Li, J.; Yang, C.; Liu, W. Extracting built-up areas using Luojia-1A nighttime light imageries in Wuhan, China. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 30–39. [Google Scholar]
- Chen, Z.; Yu, B.; Ta, N.; Shi, K.; Yang, C.; Wang, C.; Zhao, X.; Deng, S.; Wu, J. Delineating seasonal relationships between Suomi NPP-VIIRS nighttime light and human activity across Shanghai, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4275–4283. [Google Scholar] [CrossRef]
- Ye, T.; Zhao, N.; Yang, X.; Ouyang, Z.; Liu, X.; Chen, Q.; Hu, K.; Yue, W.; Qi, J.; Li, Z.; et al. Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. Sci. Total. Environ. 2019, 658, 936–946. [Google Scholar] [CrossRef]
- Zhao, F.; Ding, J.; Zhang, S.; Luan, G.; Song, L.; Peng, Z.; Du, Q.; Xie, Z. Estimating rural electric power consumption using NPP-VIIRS night-time light, toponym and POI data in ethnic minority areas of China. Remote Sens. 2020, 12, 2836. [Google Scholar] [CrossRef]
- Lai, J.; Pan, J. China’s city network structural characteristics based on population flow during spring festival travel rush: Empirical analysis of “Tencent Migration” big data. J. Urban Plan. Dev. 2020, 146, 04020018. [Google Scholar] [CrossRef]
- Chen, M.; Luo, X.; Hu, M.; Zhang, X. Club characteristic and the proximity effect of travel links between cities in China. Complexity 2020, 2020, 5786384. [Google Scholar] [CrossRef]
- Xu, X.K.; Wen, C.; Zhang, G.Y.; Sun, H.C.; Liu, B.; Wang, X.W. The geographical destination distribution and effect of outflow population of Wuhan when the outbreak of COVID-19. J. Univ. Electron. Sci. Technol. China 2020, 49. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Yang, B.; Zheng, X.; Chen, M. Risk assessment of COVID-19 based on multisource data from a geographical viewpoint. IEEE Access 2020, 8, 125702–125713. [Google Scholar] [CrossRef]
- Zeng, C.; Song, Y.; Cai, D.; Hu, P.; Cui, H.; Yang, J.; Zhang, H. Exploration on the spatial spillover effect of infrastructure network on urbanization: A case study in Wuhan urban agglomeration. Sustain. Cities Soc. 2019, 47, 101476. [Google Scholar] [CrossRef]
- Xu, Z.N.; Gao, X.L. A novel method for identifying the boundary of urban built-up areas with POI data. Acta Geogr. Sin. 2016, 71, 928–939. [Google Scholar]
- Feng, R.; Wang, F.; Wang, K.; Xu, S. Quantifying influences of anthropogenic-natural factors on ecological land evolution in mega-urban agglomeration: A case study of Guangdong-Hong Kong-Macao greater Bay area. J. Clean. Prod. 2021, 283, 125304. [Google Scholar] [CrossRef]
- Sahana, M.; Hong, H.; Sajjad, H. Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Sci. Total. Environ. 2018, 628, 1557–1566. [Google Scholar] [CrossRef]
- Zhen, F.; Cao, Y.; Qin, X.; Wang, B. Delineation of an urban agglomeration boundary based on Sina Weibo microblog ‘check-in’ data: A case study of the Yangtze River Delta. Cities 2017, 60, 180–191. [Google Scholar] [CrossRef]
- Kotthaus, S.; Grimmond, C.S.B. Atmospheric boundary-layer characteristics from ceilometer measurements. Part 2, Application to London’s urban boundary layer. Q. J. R. Meteorol. Soc. 2018, 144, 1511–1524. [Google Scholar] [CrossRef] [Green Version]
- Ricci, A.; Burlando, M.; Repetto, M.; Blocken, B. Simulation of urban boundary and canopy layer flows in port areas induced by different marine boundary layer inflow conditions. Sci. Total. Environ. 2019, 670, 876–892. [Google Scholar] [CrossRef] [PubMed]
- Guoai, G.U. Analysis on system structure and complexity of urban development. Int. J. Simul. Syst. Sci. Tech. 2016, 17, 5.1–5.6. [Google Scholar]
- Yang, Y.; Fan, S.; Wang, L.; Gao, Z.; Zhang, Y.; Zou, H.; Miao, S.; Li, Y.; Huang, M.; Yim, S.; et al. Diurnal evolution of the wintertime boundary layer in urban Beijing, China: Insights from Doppler Lidar and a 325-m meteorological tower. Remote Sens. 2020, 12, 3935. [Google Scholar] [CrossRef]
- Wu, K.; Fang, C.; Huang, H.; Wang, J. Comprehensive delimitation and ring identification on urban spatial radiation of regional central cities: Case study of Zhengzhou. J. Urban Plan. Dev. 2013, 139, 258–273. [Google Scholar] [CrossRef]
- Zhou, B.; Kockelman, K.M.; Lemp, J.D. Applications of integrated transport and gravity-based land use models for policy analysis. Transp. Res. Rec. 2009, 2133, 123–132. [Google Scholar] [CrossRef]
- Xiang, S.; Fu, X.; Zhou, J.; Wang, Y.; Zhang, Y.; Hu, X.; Xu, J.; Liu, H.; Liu, J.; Ma, J.; et al. Non-intrusive reduced order model of urban airflow with dynamic boundary conditions. Build. Environ. 2021, 187, 107397. [Google Scholar] [CrossRef]
- Kong, X.; Xia, F.; Ma, K.; Li, J.; Yang, Q. Discovering transit-oriented development regions of megacities using heterogeneous urban data. IEEE Trans. Comput. Soc. Syst. 2019, 6, 943–955. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, B.; Tu, B.; Yang, Y.; Wang, Z.; Jiang, W.; Yao, K.; Yang, J. Refining urban built-up area via multi-source data fusion for the analysis of Dongting Lake eco-economic zone spatiotemporal expansion. Remote Sens. 2020, 12, 1797. [Google Scholar] [CrossRef]
- Ning, X.; Wang, H.; Liu, Y.; Hao, M.; Dong, Q.; Xu, W.; Cai, X.; Fu, M.; Dong, W.; Liu, Y. Urban ecological space changes of 338 prefecture-level cities in China from 2016 to 2017 with high-precision urban boundary and land cover data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B4-2, 157–160. [Google Scholar] [CrossRef]
- Wang, W.; Jiao, L.; Zhang, W.; Jia, Q.; Su, F.; Xu, G.; Ma, S. Delineating urban growth boundaries under multi-objective and constraints. Sustain. Cities Soc. 2020, 61, 102279. [Google Scholar] [CrossRef]
- Xian, S.; Li, L.; Qi, Z. Toward a sustainable urban expansion: A case study of Zhuhai, China. J. Clean. Prod. 2019, 230, 276–285. [Google Scholar] [CrossRef]
- Xue, X.; Yu, Z.; Zhu, S.; Zheng, Q.; Weston, M.; Wang, K.; Gan, M.; Xu, H. Delineating urban boundaries using Landsat 8 multispectral data and VIIRS nighttime light data. Remote Sens. 2018, 10, 799. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Du, J.; Liu, Y. Evolution, development and evaluation of eco-transportation in Guangdong-Hong Kong-Macao Greater Bay Area. Syst. Sci. Control. Eng. 2020, 8, 97–107. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, S.; Liu, Y.; Tian, L. Identifying the urban-rural fringe using wavelet transform and kernel density estimation: A case study in Beijing City, China. Environ. Model. Softw. 2016, 83, 286–302. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Xin, Q.; Huang, J. Developing a multi-filter convolutional neural network for semantic segmentation using high-resolution aerial imagery and LiDAR data. ISPRS J. Photogramm. Remote Sens. 2018, 143, 3–14. [Google Scholar] [CrossRef]
- Haque, M.E.; Al-Ramadan, B.; Johnson, B.A. Rule-based land cover classification from very high-resolution satellite image with multiresolution segmentation. J. Appl. Remote Sens. 2016, 10, 036004. [Google Scholar] [CrossRef]
- Johnson, B.A.; Jozdani, S.E. Identifying generalizable image segmentation parameters for urban land cover mapping through meta-analysis and regression tree modeling. Remote Sens. 2018, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Fritts, J.E.; Goldman, S.A. Image segmentation evaluation: A survey of unsupervised methods. Comput. Vis. Image Underst. 2008, 110, 260–280. [Google Scholar] [CrossRef] [Green Version]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Ma, J.; Li, Q.; Ying, W. Identification of a rural-urban fringe based on wavelet transform—A case study of Wuhan. Geomat. Inf. Sci. Wuhan Univ. 2016, 41, 235–241. [Google Scholar]
- Menaka, D.; Suresh, L.P.; Premkumar, S.S. Wavelet transform-based land cover classification of satellite images. Adv. Intell. Syst. Comput. 2015, 325, 45–854. [Google Scholar]
- Huang, X.; Zhang, L. A multiscale urban complexity index based on 3D wavelet transform for spectral-spatial feature extraction and classification: An evaluation on the 8-channel WorldView-2 imagery. Int. J. Remote Sens. 2012, 33, 2641–2656. [Google Scholar] [CrossRef]
- Zhang, J.; He, X. The center of city function in Guiyang, China: An evaluation with emerging data. Int. J. Sustain. Dev. Plan. 2020, 15, 735–741. [Google Scholar] [CrossRef]
- Chen, S.; Lang, W.; Li, X.; Shen, C.; Fan, Q. Determining the influence of building density on heat island effect using Baidu map and remote sensing. Photogramm. Eng. Remote Sens. 2018, 84, 549–558. [Google Scholar] [CrossRef]
- Aubrecht, C.; Torres, J.A.L. Evaluating multi-sensor nighttime earth observation data for identification of mixed vs. residential use in urban areas. Remote Sens. 2016, 8, 114. [Google Scholar] [CrossRef] [Green Version]
- Xiao, P.; Wang, X.; Feng, X.; Zhang, X.; Yang, Y. Detecting China’s urban expansion over the past three decades using nighttime light data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4095–4106. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global articular impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
Data | Spatial | Data Sources | Time |
---|---|---|---|
Luojia-01 | 130 m × 130 m | http://59.175.109.173:8888/index.html, accessed on 25 March 2021 | 2018.10–2019.03 |
POI Density | 30 m × 30 m | www.amap.com, accessed on 25 March 2021 | 2021.03 |
Tencent Migration | 30 m × 30 m | www.amap.com, accessed on 25 March 2021 | 2020.01–2021.01 |
Google Earth | 4.78 m × 4.78 m | http://earth.google.com/, accessed on 25 March 2021 | 2021.03 |
Traffic | Restaurant | Shopping | Life | Leisure | Residential | School | |
---|---|---|---|---|---|---|---|
Macao | 1707 | 1572 | 329 | 303 | 1278 | 153 | 248 |
Hong Kong | 50,569 | 57,503 | 31,143 | 8708 | 21,428 | 3153 | 3285 |
Dongguan | 13,878 | 13,380 | 13,047 | 8997 | 14,270 | 18,942 | 1350 |
Foshan | 7793 | 6159 | 5938 | 4762 | 8208 | 5764 | 1714 |
Guangzhou | 21,645 | 27,738 | 24,686 | 12,396 | 14,366 | 16,134 | 2544 |
Huizhou | 25,580 | 28,141 | 23,194 | 5418 | 6357 | 7688 | 625 |
Jiangmen | 10,473 | 11,687 | 5648 | 2230 | 4410 | 2055 | 607 |
Shenzhen | 15,512 | 16,920 | 10,522 | 13,397 | 18,965 | 16,202 | 1990 |
Zhaoqing | 4756 | 4841 | 3256 | 1252 | 4131 | 1496 | 298 |
Zhongshan | 7381 | 8011 | 6227 | 3464 | 5261 | 5519 | 579 |
Zhuhai | 11,945 | 12,839 | 9334 | 2314 | 3053 | 2687 | 315 |
Tourist Attractions | Hospital | Hotel | Financial | Government | Public Services | Business | |
Macao | 813 | 862 | 1811 | 5628 | 26 | 847 | 274 |
Hong Kong | 6468 | 10,956 | 15,758 | 131,864 | 31 | 7868 | 5757 |
Dongguan | 18,808 | 22,292 | 32,775 | 43,277 | 496 | 92,469 | 47,315 |
Foshan | 16,502 | 20,606 | 27,342 | 37,264 | 482 | 67,099 | 34,385 |
Guangzhou | 34,893 | 46,575 | 57,882 | 76,418 | 1034 | 95,459 | 58,195 |
Huizhou | 10,162 | 13,895 | 12,340 | 25,622 | 234 | 42,467 | 11,564 |
Jiangmen | 9040 | 8168 | 8509 | 17,944 | 174 | 55,471 | 7996 |
Shenzhen | 20,654 | 31,449 | 49,319 | 56,927 | 675 | 127,603 | 50,372 |
Zhaoqing | 7963 | 6033 | 7246 | 13,101 | 152 | 37,099 | 4777 |
Zhongshan | 6907 | 10,329 | 11,118 | 17,261 | 58 | 37,354 | 13,137 |
Zhuhai | 4576 | 6876 | 5903 | 12,332 | 36 | 19,584 | 6073 |
Data | Urban | Rural | Accuracy | Kappa | |
---|---|---|---|---|---|
NTL | Urban | 332 | 66 | 85.57% | 0.6256 |
Rural | 261 | 2235 | |||
NP | Urban | 358 | 36 | 88.97% | 0.7011 |
Rural | 71 | 2311 | |||
NPH | Urban | 446 | 16 | 93.60% | 0.8155 |
Rural | 36 | 2362 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Yuan, X.; Zhang, D.; Zhang, R.; Li, M.; Zhou, C. Delineation of Urban Agglomeration Boundary Based on Multisource Big Data Fusion—A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area (GBA). Remote Sens. 2021, 13, 1801. https://doi.org/10.3390/rs13091801
He X, Yuan X, Zhang D, Zhang R, Li M, Zhou C. Delineation of Urban Agglomeration Boundary Based on Multisource Big Data Fusion—A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area (GBA). Remote Sensing. 2021; 13(9):1801. https://doi.org/10.3390/rs13091801
Chicago/Turabian StyleHe, Xiong, Xiaodie Yuan, Dahao Zhang, Rongrong Zhang, Ming Li, and Chunshan Zhou. 2021. "Delineation of Urban Agglomeration Boundary Based on Multisource Big Data Fusion—A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area (GBA)" Remote Sensing 13, no. 9: 1801. https://doi.org/10.3390/rs13091801
APA StyleHe, X., Yuan, X., Zhang, D., Zhang, R., Li, M., & Zhou, C. (2021). Delineation of Urban Agglomeration Boundary Based on Multisource Big Data Fusion—A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area (GBA). Remote Sensing, 13(9), 1801. https://doi.org/10.3390/rs13091801